In an investigation of task-set reconfiguration, participants switched between 2 tasks on every 2nd trial in 5 experiments and on every 4th trial in a final experiment. The tasks were to classify either the digit member of a pair of characters as even/odd or the letter member as consonant/vowel. As the response-stimulus interval increased up to 0.6 s, the substantial cost to performance of this predictable task-switch fell: Participants could partially reconfigure in advance of the stimulus. However, even with 1.2 s available for preparation, a large asymptotic reaction time (RT) cost remained, but only on the 1st trial of the new task. This is attributed to a component of reconfiguration triggered exogenously, i.e., only by a task-relevant stimulus. That stimuli evoke associated task-sets also explains why RT and switch costs increased when the stimulus included a character associated with the currently irrelevant task.
Observed impairments on tests of memory and planning suggest a global pathology for mania consistent with previous profiles for this disorder and similar to established profiles for depression. The results on the affective shifting task demonstrate the presence of mood-congruent bias and dissociable components of inhibitory control in mania and depression. Against a background of memory and planning impairments in the two groups, these findings are consistent with a role for the ventromedial prefrontal cortex in mediating mood-cognition relationships.
Patients sustaining lesions of the orbital prefrontal cortex (PFC) exhibit marked impairments in the performance of laboratory-based gambling, or risk-taking, tasks, suggesting that this part of the human PFC contributes to decision-making cognition. However, to date, little is known about the particular regions of the orbital cortex that participate in this function. In the present study, eight healthy volunteers were scanned, using H(2)(15)0 PET technology, while performing a novel computerized risk-taking task. The task involved predicting which of two mutually exclusive outcomes would occur, but critically, the larger reward (and penalty) was associated with choice of the least likely outcome, whereas the smallest reward (and penalty) was associated with choice of the most likely outcome. Resolving these "conflicting" decisions was associated with three distinct foci of regional cerebral blood flow increase within the right inferior and orbital PFC: laterally, in the anterior part of the middle frontal gyrus [Brodmann area 10 (BA 10)], medially, in the orbital gyrus (BA 11), and posteriorly, in the anterior portion of the inferior frontal gyrus (BA 47). By contrast, increases in the degree of conflict inherent in these decisions was associated with only limited changes in activity within orbital PFC and the anterior cingulate cortex. These results suggest that decision making recruits neural activity from multiple regions of the inferior PFC that receive information from a diverse set of cortical and limbic inputs, and that the contribution of the orbitofrontal regions may involve processing changes in reward-related information.
Recent work has suggested an association between the orbitofrontal cortex in humans and practical decision making. The aim of this study was to investigate the profile of cognitive deficits, with particular emphasis on decision-making processes, following damage to different sectors of the human prefrontal cortex. Patients with discrete orbitofrontal (OBF) lesions, dorsolateral (DL) lesions, dorsomedial (DM) lesions and large frontal lesions (Large) were compared with matched controls on three different decision-making tasks: the Iowa Gambling Task and two recently developed tasks that attempt to fractionate some of the cognitive components of the Iowa task. A comprehensive battery including the assessment of recognition memory, working memory, planning ability and attentional set-shifting was also administered. Whilst combined frontal patients were impaired on several of the tasks employed, distinct profiles emerged for each patient group. In contrast to previous data, patients with focal OBF lesions performed at control levels on the three decision-making tasks (and the executive tasks), but showed some evidence of prolonged deliberation. DL patients showed pronounced impairment on working memory, planning, attentional shifting and the Iowa Gambling Task. DM patients were impaired at the Iowa Gambling Task and also at planning. The Large group displayed diffuse impairment, but were the only group to exhibit risky decision making. Methodological differences from previous studies of OBF patient groups are discussed, with particular attention to lesion laterality, lesion size and psychiatric presentation. Ventral and dorsal aspects of prefrontal cortex must interact in the maintenance of rational and 'non-risky' decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.