Analytical and Chemical Sciences, Research Triangle Institute, Research Triangle Park, North Carolina, USA Negative ion electrospray (ES) operating on a single quadrupole mass spectrometer for the detection of low-molecular-weight molecules is discussed. The ES interface was operated at a positive cylindrical electrode potential to produce negative ions, and the results obtained were compared to the positive ion mode. As in the case of operation in the more common positive mode, negative ions with varying degrees of solvation and structurally relevant fragments can be obtained from a variety of solute species, including β-lactam antibiotics, aminoglycosides, aminocyclitols, tetracyclines, sulfonamides, nucleotides, peptides, and explosives. No fragmentation of parent species, except those from some labile explosives, was provided because low potential differences are applied between the capillary and the first skimmer, and electrical discharge is avoided in the gas phase. An increase in the capillary voltage resulted in collision-induced decomposition to produce structurally relevant fragment ions in both operation modes. An evaluation of representative chromatographic solvents indicated that 2-propanol added with oxygen in the ES bath gas is best suited to suppress electrical (corona) discharge phenomena in negative ion operation, whereas it aids in solution nebulization, desolvation, and transfer of ions in solution to the gas phase. For positive ion mode, no such precaution was necessary. Conditions that promote the formation of ions in solution usually improve ES response. Therefore, an increase in the solvent pH can increase the sensitivity in negative ion ES ionization. Negative ion ES offers the advantage of providing complementary structural information to help in the characterization of an unknown compound or to confirm a certain tentatively proposed structure. Nucleotides and explosives were best characterized in negative ion mode owing to the ease with which they form anions in solution, and they could be detected down to the l-pg /gML level.
The human cytochrome P450 (P450) superfamily consists of membrane-bound proteins that metabolize a myriad of xenobiotics and endogenous compounds. Quantification of P450 expression in various tissues under normal and induced conditions has an important role in drug safety and efficacy. Conventional immunoquantification methods have poor dynamic range, low throughput, and a limited number of specific antibodies. Recent advances in MS-based quantitative proteomics enable absolute protein quantification in a complex biological mixture. We have developed a gel-free MS-based protein quantification strategy to quantify CYP3A enzymes in human liver microsomes (HLM). Recombinant protein-derived proteotypic peptides and synthetic stable isotope-labeled proteotypic peptides were used as calibration standards and internal standards, respectively. The lower limit of quantification was approximately 20 fmol P450. In two separate panels of HLM examined (n = 11 and n = 22), CYP3A, CYP3A4 and CYP3A5 concentrations were determined reproducibly (CV or=0.87) and marker activities (r(2)>or=0.88), including testosterone 6beta-hydroxylation (CYP3A), midazolam 1'-hydroxylation (CYP3A), itraconazole 6-hydroxylation (CYP3A4) and CYP3A5-mediated vincristine M1 formation (CYP3A5). Taken together, our MS-based method provides a specific, sensitive and reliable means of P450 protein quantification and should facilitate P450 characterization during drug development, especially when specific substrates and/or antibodies are unavailable.
The use of collisional-activation dissociation (CAD) in the electrospray transport region was evaluated for generating structural information on several pesticides and antibiotics. The collision energy used to generate the CAD spectra could be varied easily by changing the capillary/skimmer potential difference, imparting from 0 eV to above 16 eV internal energy to the near thermal ions generated by electrospray. The internal energy distribution for low-energy collisions (capillary/skimmer potential difference of 20 V) closely matches the curves generated by a triple-quadrupole mass spectrometer. Furthermore, the CAD spectra for selected compounds generated by electrospray in the transport region at a capillary/skimmer potential difference of 30-50 V closely resembled those obtained from the [M + H]+ ion by a triple quadrupole using 30 eV collision energy. The CAD of ions in the transport region resulted in 70% to 80% daughter-ion yields and minimal loss in overall ion current compared to the ion current for protonated or cationized parent molecules. The major daughter ions for 10 pg of Aldicarb and penicillin G could be detected (signal-to-noise ratio greater than 5) under full-scan CAD conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.