Mammalian fertilization requires the coordinated activity of motile spermatozoa, muscular contractions of the uterus and oviduct, as well as ciliary beating. These elastic structures generate forces that drive fluid motion, but their configurations are, in turn, determined by the fluid dynamics. We review the basic fluid mechanical aspects of reproduction, including flagellar/ciliary beating and peristalsis. We report on recent biological studies that have shed light on the relative importance of the mechanical ingredients of reproduction. In particular, we examine sperm motility in the reproductive tract, ovum pickup and transport in the oviduct, as well as sperm-egg interactions. We review recent advances in understanding the internal mechanics of cilia and flagella, flagellar surface interaction, sperm motility in complex fluids, and the role of fluid dynamics in embryo transfer. We outline promising computational fluid dynamics frameworks that may be used to investigate these complex, fluid-structure interactions.
A new model for limb development which incorporates both outgrowth due to cell growth and division, and interactions between morphogens produced in the zone of polarizing activity (ZPA) and the apical epidermal ridge (AER) is developed and analysed. The numerically-computed spatio-temporal distributions of these morphogens demonstrate the importance of interaction between the organizing regions in establishing the morphogenetic terrain on which cells reside, and because growth is explicitly incorporated, it is found that the history of a cell's exposure to the morphogens depends heavily on where the cell originates in the early limb bud. Because the biochemical steps between morphogen(s) and gene activation have not been elucidated, there is no biologically-based mechanism for translating the spatio-temporal distributions of morphogens into patterns of gene expression, but several theoretically plausible functions that bridge the gap are suggested. For example it is shown that interpretation functions based on the history of a cell's exposure to the morphogens can qualitatively account for observed patterns of gene expression. The mathematical model and the associated computational algorithms are sufficiently flexible that other schemes for the interactions between morphogens, and their effect on the spatio-temporal pattern of growth and gene expression, can easily be tested. Thus an additional result of this work is a computational tool that can be used to explore the effects of various mutations and experimental interventions on the growth of the limb and the pattern of gene expression. In future work we will extend the model to a three-dimensional representation of the limb and will incorporate a more realistic description of the rheological properties of the tissue mass, which here is treated as a Newtonian fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.