Lipid nanoparticles (LNPs) have emerged across the pharmaceutical industry as promising vehicles to deliver a variety of therapeutics. Currently in the spotlight as vital components of the COVID-19 mRNA vaccines, LNPs play a key role in effectively protecting and transporting mRNA to cells. Liposomes, an early version of LNPs, are a versatile nanomedicine delivery platform. A number of liposomal drugs have been approved and applied to medical practice. Subsequent generations of lipid nanocarriers, such as solid lipid nanoparticles, nanostructured lipid carriers, and cationic lipid–nucleic acid complexes, exhibit more complex architectures and enhanced physical stabilities. With their ability to encapsulate and deliver therapeutics to specific locations within the body and to release their contents at a desired time, LNPs provide a valuable platform for treatment of a variety of diseases. Here, we present a landscape of LNP-related scientific publications, including patents and journal articles, based on analysis of the CAS Content Collection, the largest human-curated collection of published scientific knowledge. Rising trends are identified, such as nanostructured lipid carriers and solid lipid nanoparticles becoming the preferred platforms for numerous formulations. Recent advancements in LNP formulations as drug delivery platforms, such as antitumor and nucleic acid therapeutics and vaccine delivery systems, are discussed. Challenges and growth opportunities are also evaluated in other areas, such as medical imaging, cosmetics, nutrition, and agrochemicals. This report is intended to serve as a useful resource for those interested in LNP nanotechnologies, their applications, and the global research effort for their development.
Single-chain antigen-binding proteins are novel recombinant polypeptides, composed of an antibody variable light-chain amino acid sequence (VL) tethered to a variable heavy-chain sequence (VH) by a designed peptide that links the carboxyl terminus of the VL sequence to the amino terminus of the VH sequence. These proteins have the same specificities and affinities for their antigens as the monoclonal antibodies whose VL and VH sequences were used to construct the recombinant genes that were expressed in Escherichia coli. Three of these proteins, one derived from the sequence for a monoclonal antibody to growth hormone and two derived from the sequences of two different monoclonal antibodies to fluorescein, were designed, constructed, synthesized, purified, and assayed. These proteins are expected to have significant advantages over monoclonal antibodies in a number of applications.
It has been proposed that proteases are important in endothelial cell behavior. We examined the contribution of the gelatinase/type IV collagenase system in an in vitro model of endothelial differentiation. Human umbilical vein endothelial cells rapidly align and form networks of tubes when cultured on a basement membrane preparation, Matrigel. Zymograms of culture supernates demonstrate a 72-kD and a 92-kD gelatinase activity; the cells produce most of the 72-kD gelatinase, whereas the 92-kD activity is derived entirely from the Matrigel. Addition of antibodies against type IV gelatinase/collagenase decreases the area of the tube network. Both tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2, similarly decrease tube formation when added to cultures. Conversely, exogenous recombinant 72-kD gelatinase increases tube-forming activity. The effects of the anti-gelatinase antibodies and the TIMPs are not additive. Inhibition by either antibodies or TIMPs is greatest when they are added at culture initiation, suggesting that the protease activity is important in the early steps of morphogenesis. However, culture of the cells on Matrigel does not increase early expression of mRNA for the 72-kD gelatinase. Expression of message for the enzyme actually decreases during the course of the assay, while transcription of mRNAs for TIMPs increases, further supporting the concept that collagenases facilitate an early event in tube formation. These data demonstrate that gelatinase/type IV collagenase activity is important in endothelial cell morphogenesis on Matrigel, and suggest a role for collagenases in formation of new capillaries in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.