Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive. The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein "DsRed" by directed evolution first to increase the speed of maturation, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.
All coelenterate fluorescent proteins cloned to date display some form of quaternary structure, including the weak tendency of Aequorea green fluorescent protein (GFP) to dimerize, the obligate dimerization of Renilla GFP, and the obligate tetramerization of the red fluorescent protein from Discosoma (DsRed). Although the weak dimerization of Aequorea GFP has not impeded its acceptance as an indispensable tool of cell biology, the obligate tetramerization of DsRed has greatly hindered its use as a genetically encoded fusion tag. We present here the stepwise evolution of DsRed to a dimer and then either to a genetic fusion of two copies of the protein, i.e., a tandem dimer, or to a true monomer designated mRFP1 (monomeric red fluorescent protein). Each subunit interface was disrupted by insertion of arginines, which initially crippled the resulting protein, but red fluorescence could be rescued by random and directed mutagenesis totaling 17 substitutions in the dimer and 33 in mRFP1. Fusions of the gap junction protein connexin43 to mRFP1 formed fully functional junctions, whereas analogous fusions to the tetramer and dimer failed. Although mRFP1 has somewhat lower extinction coefficient, quantum yield, and photostability than DsRed, mRFP1 matures >10 times faster, so that it shows similar brightness in living cells. In addition, the excitation and emission peaks of mRFP1, 584 and 607 nm, are Ϸ25 nm red-shifted from DsRed, which should confer greater tissue penetration and spectral separation from autofluorescence and other fluorescent proteins.T he red fluorescent protein cloned from Discosoma coral (DsRed or drFP583) (1) holds great promise for biotechnology and cell biology as a spectrally distinct companion or substitute for the green fluorescent protein (GFP) from the Aequorea jellyfish (2). GFP and its blue, cyan, and yellow variants have found widespread use as genetically encoded indicators for tracking gene expression and protein localization and as donor͞ acceptor pairs for f luorescence resonance energy transfer (FRET). Extending the spectrum of available colors to red wavelengths would provide a distinct label for multicolor tracking of fusion proteins, and together with GFP (or a suitable variant) would provide a FRET donor͞acceptor pair that should be superior to the currently preferred cyan͞yellow pair (3). However, the evolution of DsRed from a scientific curiosity to a generally applicable and robust tool has been hampered by several critical problems, including a slow and incomplete maturation and obligate tetramerization (4). Most previous attempts to address the rate and͞or extent of maturation of DsRed (5, 6), including the commercially available DsRed2 (CLONTECH), have provided only modest improvements. However, an engineered variant of DsRed, known as T1 (see Fig. 1A), has recently become available and effectively solved the problem of the slow maturation (7). Another approach to overcoming these shortcomings has been to continue the search for DsRed homologues in sea coral and anemone, an ...
Engineered fluorescent protein (FP) chimeras that modulate their fluorescence in response to changes in calcium ion (Ca(2+)) concentration are powerful tools for visualizing intracellular signaling activity. However, despite a decade of availability, the palette of single FP-based Ca(2+) indicators has remained limited to a single green hue. We have expanded this palette by developing blue, improved green, and red intensiometric indicators, as well as an emission ratiometric indicator with an 11,000% ratio change. This series enables improved single-color Ca(2+) imaging in neurons and transgenic Caenorhabditis elegans. In HeLa cells, Ca(2+) was imaged in three subcellular compartments, and, in conjunction with a cyan FP-yellow FP-based indicator, Ca(2+) and adenosine 5'-triphosphate were simultaneously imaged. This palette of indicators paints the way to a colorful new era of Ca(2+) imaging.
Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.