An investigation was made of the temperature and frequency dependence of T2 for O17 in aqueous solutions containing Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. This represented an extension of the studies previously performed in this laboratory on these ions. Virtually all of the temperature effects predicted by the modified Bloch equations for a two-species system were verified experimentally. Rates of exchange of water molecules between the bulk of the solution and the first coordination sphere of the paramagnetic cations were determined for all the ions studied. Activation energies for exchange were measured and electronic T1's and coupling constants were determined in some cases. Evidence was found for a tetrahedral Co2+(H2O)4 species in aqueous solutions near 100°C. The data for cupric ion were interpreted in terms of six coordinated water molecules in a distorted octahedron, with a ratio of ∼105 existing for the axial-water-exchange rate over that of the equatorial waters. The rates of exchange were compared with other physical measurements and the nature of the bonding was considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.