The Upper Cretaceous chalks of southern England are a thick sequence of rhythmically bedded, bioturbated coccolith micrites, deposited in an outer shelf environment in water depths which varied between 50 and 200–300 m. The products of sea floor cementation are widely represented in the sequence, and a series of stages of progressive lithification can be recognized. These began with a pause in sedimentation and the formation of an omission surface, followed by (a) growth of discrete nodules below the sediment‐water interface to form a nodular chalk, erosion of which produced intraformational conglomerates. (b) Further growth and fusion of nodules into continuous or semicontinuous layers: incipient hardgrounds. (c) Scour, which exposed the layer as a true hardground. At this stage, the exposed lithified chalk bottom was subject to boring and encrustation by a variety of organisms, whilst calcium carbonate was frequently replaced by glauconite and phosphate to produce superficial mineralized zones. In many cases, the processes of sedimentation, cementation, exposure and mineralization were repeated several times, producing composite hardgrounds built up of a series of layers of cemented and mineralized chalk, indicating a long and complex diagenetic history. Petrographic study of early cemented chalks indicates lithification was the result of the precipitation of small crystals on and between coccoliths and coccolith fragments. By analogy with known occurrences of early lithification in Recent deeper water carbonates, the cement is believed to have been either high magnesian calcite or aragonite, and more probably the former. The vast scale of operations involved in the cementation process precludes carbonate in expelled pore fluids as the source of cement, whilst quantities of aragonite incorporated in sediment are also inadequate. This, plus the observed association of horizons of early lithification with pauses in sedimentation associated with omission surfaces suggests seawater as a source of cementing materials. Stratigraphic studies indicate that processes of early lithification leading to hardground formation proceeded to completion in intervals to be measured in tens or hundreds of years. Regional studies suggest that early lithification characterized relatively shallow water phases associated with regional regression over the whole of the area, whilst in detail, the distribution of mature mineralized hardground complexes is strongly correlated with sedimentary thinning and condensation over small areas and the buried flanks of massifs. Early cementation in more basinal areas is typically in the form of nodular developments and incipient hardgrounds, whilst day contents in excess of a few percent appear to have inhibited early lithification. The striking rhythmicity of hardgrounds and nodular chalks is no more than a particular expression of the overall rhythmicity of chalk sequences. The stage of early lithification reached in any instance is dependent on sediment type, the time interval represent...
Two distinct hydrogeochemical regimes currently dominate the Peruvian continental margin. One, in shallower water (150-450 m) shelf to upper-slope regions, is characterized by interstitial waters with strong positive chloride gradients with depth. The maximum measured value of 1043 mM chloride at Site 680 at ITS corresponds to a degree of seawater evaporation of ~2 times. Major ion chemistry and strontioum isotopic composition of the interstitial waters suggest that a subsurface brine that has a marine origin and is of pre-early Miocene "age," profoundly influences the chemistry and diagenesis of this shelf environment. Site 684 at ~9°S must be closest to the source of this brine, which becomes diluted with seawater and/or interstitial water as it flows southward toward Site 686 at ~13°S (and probably beyond) at a rate of approximately 3 to 4 cm/yr, since early Miocene time. The other regime, in deep water (3000-5000 m) middle to lower-slope regions, is characterized by interstitial waters with steep negative and nonsteady-state chloride gradients with depth. The minimum measured value of 454 mM chloride, at Site 683 at ITS, corresponds to-20% dilution of seawater chloride The most probably sources of these low-chloride fluids are gas hydrate dissociation and mineral (particularly clay) dehydration reactions. Fluid advection is consistent with (1) the extent of dilution shown in the chloride profiles, (2) the striking nonsteady-state depth profiles of chlorides at Sites 683 and 688 and of 87 Sr/ 86 Sr ratios at Site 685, and (3) the temperatures resulting from an average geothermal gradient of 50°C/km and required for clay mineral dehydration reactions. Strontium isotope data reveal two separate fluid regimes in this slope region: a more northerly one at Sites 683 and 685 that is influenced by fluids with a radiogenic continental strontium signature, and a southerly one at Sites 682 and 688 that is influenced by fluids with a nonradiogenic oceanic signatures. Stratigraphically controlled fluid migration seems to prevail in this margin. Because of its special tectonic setting, Site 679 at ITS is geochemically distinct. The interstitial waters are characterized by seawater chloride concentrations to-200 mbsf and deeper by a significantly lower chloride concentration of about two-thirds of the value in seawater, suggesting mixing with a meteoric water source. Regardless of the hydrogeochemical regime, the chemistry and isotopic compositions of the interstitial waters at all sites are markedly modified by diagenesis, particularly by calcite and dolomite crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.