Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of landdependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri ), shorebirds whose breeding and nonbreeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117-11 680 km (10 153G1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008-7390 km. Flight duration ranged from 6.0 to 9.4 days (7.8G1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a windassisted passage relatively free of pathogens and predators.
Migrating birds make the longest non‐stop endurance flights in the animal kingdom. Satellite technology is now providing direct evidence on the lengths and durations of these flights and associated staging episodes for individual birds. Using this technology, we compared the migration performance of two subspecies of bar‐tailed godwit Limosa lapponica travelling between non‐breeding grounds in New Zealand (subspecies baueri) and northwest Australia (subspecies menzbieri) and breeding grounds in Alaska and eastern Russia, respectively. Individuals of both subspecies made long, usually non‐stop, flights from non‐breeding grounds to coastal staging grounds in the Yellow Sea region of East Asia (average 10 060 ± SD 290 km for baueri and 5860 ± 240 km for menzbieri). After an average stay of 41.2 ± 4.8 d, baueri flew over the North Pacific Ocean before heading northeast to the Alaskan breeding grounds (6770 ± 800 km). Menzbieri staged for 38.4 ± 2.5 d, and flew over land and sea northeast to high arctic Russia (4170 ± 370 km). The post‐breeding journey for baueri involved several weeks of staging in southwest Alaska followed by non‐stop flights across the Pacific Ocean to New Zealand (11 690 km in a complete track) or stopovers on islands in the southwestern Pacific en route to New Zealand and eastern Australia. By contrast, menzbieri returned to Australia via stopovers in the New Siberian Islands, Russia, and back at the Yellow Sea; birds travelled on average 4510 ± 360 km from Russia to the Yellow Sea, staged there for 40.8 ± 5.6 d, and then flew another 5680–7180 km to Australia (10 820 ± 300 km in total). Overall, the entire migration of the single baueri godwit with a fully completed return track totalled 29 280 km and involved 20 d of major migratory flight over a round‐trip journey of 174 d. The entire migrations of menzbieri averaged 21 940 ± 570 km, including 14 d of major migratory flights out of 154 d total. Godwits of both populations exhibit extreme flight performance, and baueri makes the longest (southbound) and second‐longest (northbound) non‐stop migratory flights documented for any bird. Both subspecies essentially make single stops when moving between non‐breeding and breeding sites in opposite hemispheres. This reinforces the critical importance of the intertidal habitats used by fuelling godwits in Australasia, the Yellow Sea, and Alaska.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. ABSTRACT.-We documented fat loads and abdominal organ sizes of Bar-tailed Godwits (Limosa lapponica baueri) that died after colliding against a radar dome on the Alaska Peninsula, most likely just after takeoff on a trans-Pacific flight of 11,000 km, and of birds of the same subspecies just before northward departure from New Zealand. We compared these data with data on body composition of godwits of the smaller lapponica subspecies obtained during a northward stopover in The Netherlands. As a consequence of high amounts of subcutaneous and intraperitoneal fat, and very small fat-free mass, Bar-tailed Godwits from Alaska had relative fat loads that are among the highest ever recorded in birds (ca. 55% of fresh body mass). Compared with northbound godwits from New Zealand, the Alaskan birds had very small gizzards, livers, kidneys, and guts. This suggests that upon departure, long-distance migrants dispense with parts of their "metabolic machinery" that are not directly necessary during flight, and rebuild these organs upon arrival at the migratory destination. University of California Press
Background: The global spread of the highly pathogenic avian influenza H5N1 virus has stimulated interest in a better understanding of the mechanisms of H5N1 dispersal, including the potential role of migratory birds as carriers. Although wild birds have been found dead during H5N1 outbreaks, evidence suggests that others have survived natural infections, and recent studies have shown several species of ducks capable of surviving experimental inoculations of H5N1 and shedding virus. To investigate the possibility of migratory birds as a means of H5N1 dispersal into North America, we monitored for the virus in a surveillance program based on the risk that wild birds may carry the virus from Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.