Use of high-resolution micro-computed tomography (mCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available mCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of mCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present mCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting mCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results. ß
Skeletal development and turnover occur in close spatial and temporal association with angiogenesis. Osteoblasts are ideally situated in bone to sense oxygen tension and respond to hypoxia by activating the hypoxiainducible factor α (HIFα) pathway. Here we provide evidence that HIFα promotes angiogenesis and osteogenesis by elevating VEGF levels in osteoblasts. Mice overexpressing HIFα in osteoblasts through selective deletion of the von Hippel-Lindau gene (Vhl) expressed high levels of Vegf and developed extremely dense, heavily vascularized long bones. By contrast, mice lacking Hif1a in osteoblasts had the reverse skeletal phenotype of that of the Vhl mutants: long bones were significantly thinner and less vascularized than those of controls. Loss of Vhl in osteoblasts increased endothelial sprouting from the embryonic metatarsals in vitro but had little effect on osteoblast function in the absence of blood vessels. Mice lacking both Vhl and Hif1a had a bone phenotype intermediate between those of the single mutants, suggesting overlapping functions of HIFs in bone. These studies suggest that activation of the HIFα pathway in developing bone increases bone modeling events through cell-nonautonomous mechanisms to coordinate the timing, direction, and degree of new blood vessel formation in bone. IntroductionThe development of the mammalian skeleton takes place in distinct phases involving the initial migration of cells to the site of future bone, condensation of mesenchymal cells, and finally the differentiation of progenitors into chondrocytes and osteoblasts. During intramembranous bone formation, which gives rise to the flat bones of the skull, mesenchymal cells differentiate directly into bone-forming osteoblasts. By contrast, in endochondral bone formation, bones are formed through a 2-stage mechanism that begins with the formation of a chondrocyte anlage, onto which osteoblasts then differentiate and deposit bone. Endochondral bone formation occurs in close spatial and temporal association and proximity to capillary invasion, suggesting that angiogenesis and osteogenesis are coupled.The initial signals for blood vessel invasion into bone are unknown, but tissue hypoxia is believed to be critical for commencement of the angiogenic cascade (1). Hypoxia triggers the changes in oxygen-regulated gene expression via the activation of the Per/Arnt/Sim (PAS)
The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, weCorrespondence to: Robert E. Guldberg, robert.guldberg@me.gatech.edu. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access Author ManuscriptBiomaterials. Author manuscript; available in PMC 2012 January 1. introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal μ-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. μ-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.
Small animal models of osteoarthritis are often used for evaluating the efficacy of pharmacologic treatments and cartilage repair strategies, but noninvasive techniques capable of monitoring matrix-level changes are limited by the joint size and the low radiopacity of soft tissues. Here we present a technique for the noninvasive imaging of cartilage at micrometer-level resolution based on detecting the equilibrium partitioning of an ionic contrast agent via microcomputed tomography. The approach exploits electrochemical interactions between the molecular charges present in the cartilage matrix and an ionic contrast agent, resulting in a nonuniform equilibrium partitioning of the ionic contrast agent reflecting the proteoglycan distribution. In an in vitro model of cartilage degeneration we observed changes in x-ray attenuation magnitude and distribution consistent with biochemical and histological analyses of sulfated glycosaminoglycans, and x-ray attenuation was found to be a strong predictor of sulfated glycosaminoglycan density. Equilibration with the contrast agent also permits direct in situ visualization and quantification of cartilage surface morphology. Equilibrium partitioning of an ionic contrast agent via microcomputed tomography thus provides a powerful approach to quantitatively assess 3D cartilage composition and morphology for studies of cartilage degradation and repair.noninvasive imaging ͉ proteoglycans ͉ cartilage degeneration ͉ osteoarthritis A nalysis of small-animal models is limited by the availability of quantitative evaluation techniques for studying the extracellular matrix (ECM) changes associated with osteoarthritis (OA) and cartilage repair. Histology is traditionally used to monitor the spatial distribution of matrix macromolecules but is time-consuming and subject to distortion artifacts and tissue damage, and it produces only semiquantitative analysis of 2D sections that may provide inaccurate 3D representations. Biochemical assays are available to quantify the amount and type of matrix macromolecules in cartilage, but these assays fail to provide their spatial distributions, particularly in small animals where the limited thickness and volume of cartilage make it difficult or impossible to extract samples from multiple regions. Additionally, longitudinal monitoring of changes with time are impossible because of the destructive nature of these histological and biochemical techniques.Proteoglycans (PGs) are a particularly appropriate target for studying OA and for evaluating the efficacy of cartilage defect repair. PGs comprise 5-10% of articular cartilage by wet mass (1) and are key regulators of its equilibrium and dynamic mechanical properties. This regulation is the result of interactions between ionic interstitial fluid and negatively charged sulfated glycosaminoglycans (sGAGs) attached to the PG backbone (2). The amount and distribution of PGs changes substantially during development (3), during degeneration and repair (4, 5), and in response to blunt trauma (6). Of particular...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.