Tumor necrosis factor-␣ (TNF-␣) is a proinflammatory cytokine, acting through the TNF-R1 and TNF-R2 receptors. The two receptors have been proposed to mediate distinct TNF-␣ effects in the CNS, TNF-R1 contributing to neuronal damage and TNF-R2 being neuroprotective. Whether TNF-␣ and its receptors play any role for neurogenesis in the adult brain is unclear. Here we used mouse models with loss of TNF-R1 and TNF-R2 function to establish whether signaling through these receptors could influence hippocampal neurogenesis in vivo under basal conditions, as well as after status epilepticus (SE), which is associated with inflammation and elevated TNF-␣ levels. Notably, in the intact brain, the number of new, mature hippocampal neurons was elevated in TNF-R1Ϫ/Ϫ and TNF-R1/R2 Ϫ/Ϫ mice, whereas no significant changes were detected in TNF-R2 Ϫ/Ϫ mice. Also after SE, the TNF-R1 Ϫ/Ϫ and TNF-R1/R2 Ϫ/Ϫ mice produced more new neurons. In contrast, the TNF-R2 Ϫ/Ϫ mice showed reduced SE-induced neurogenesis. Cell proliferation in the dentate subgranular zone was elevated in TNF-R1 Ϫ/Ϫ and TNF-R1/R2 Ϫ/Ϫ mice both under basal conditions and after SE. The TNF-R2 Ϫ/Ϫ mice either showed no change or minor decrease of cell proliferation. TNF-R1 and TNF-R2 receptors were expressed by hippocampal progenitors, as assessed with reverse transcription-PCR on sorted or cultured cells and immunocytochemistry on cultures. Our data reveal differential actions of TNF-R1 and TNF-R2 signaling in adult hippocampal neurogenesis and identify for the first time TNF-R1 as a negative regulator of neural progenitor proliferation in both the intact and pathological brain.
Inflammation influences several steps of adult neurogenesis, but whether it regulates the functional integration of the new neurons is unknown. Here, we explored, using confocal microscopy and whole-cell patch-clamp recordings, whether a chronic inflammatory environment affects the morphological and electrophysiological properties of new dentate gyrus granule cells, labeled with a retroviral vector encoding green fluorescent protein. Rats were exposed to intrahippocampal injection of lipopolysaccharide, which gave rise to longlasting microglia activation. Inflammation caused no changes in intrinsic membrane properties, location, dendritic arborization, or spine density and morphology of the new cells. Excitatory synaptic drive increased to the same extent in new and mature cells in the inflammatory environment, suggesting increased network activity in hippocampal neural circuitries of lipopolysaccharide-treated animals. In contrast, inhibitory synaptic drive was more enhanced by inflammation in the new cells. Also, larger clusters of the postsynaptic GABA A receptor scaffolding protein gephyrin were found on dendrites of new cells born in the inflammatory environment. We demonstrate for the first time that inflammation influences the functional integration of adult-born hippocampal neurons. Our data indicate a high degree of synaptic plasticity of the new neurons in the inflammatory environment, which enables them to respond to the increase in excitatory input with a compensatory upregulation of activity and efficacy at their afferent inhibitory synapses.
Stroke induced by middle cerebral artery occlusion leads to transiently increased progenitor proliferation in the subventricular zone (SVZ) and long-lasting striatal neurogenesis in adult rodents. Tumor necrosis factor-a (TNF-a) is upregulated in stroke-damaged brain. Whether TNF-a and its receptors influence SVZ progenitor proliferation after stroke is unclear. Here we show that the increased proliferation 1 week after stroke occurred concomitantly with elevated microglia numbers and TNF-a and TNF receptor-1 (TNF-R1) gene expression in the SVZ of wild-type mice. TNF receptor-1 was expressed on sorted SVZ progenitor cells from nestin-green fluorescent protein reporter mice. In animals lacking TNF-R1, stroke-induced SVZ cell proliferation and neuroblast formation were enhanced. In contrast, deletion of TNF-R1 did not alter basal or status epilepticus-stimulated cell proliferation in SVZ. Addition of TNF-a reduced the size and numbers of SVZ neurospheres through a TNF-R1-dependent mechanism without affecting cell survival. Our results provide the first evidence that TNF-R1 is a negative regulator of stroke-induced SVZ progenitor proliferation. Blockade of TNF-R1 signaling might be a novel strategy to promote the proliferative response in SVZ after stroke.
Hyperactivation of the cyclin-dependent kinase 5 (cdk5), triggered by proteolytic conversion of its neuronal activator, p35, to a more potent byproduct, p25, has been implicated in Alzheimer's disease (AD), amyotrophic lateral sclerosis, and Niemann-Pick type C disease (NPC). This mechanism is thought to lead to the development of neuropathological hallmarks, i.e., hyperphosphorylated cytoskeletal proteins, neuronal inclusions, and neurodegeneration, that are common to all three diseases. This pathological ensemble is recapitulated in a single model, the npc-1 (npc Ϫ/Ϫ ) mutant mouse. Previously, we showed that pharmacological cdk inhibitors dramatically reduced hyperphosphorylation, lesion formation, and locomotor defects in npc Ϫ/Ϫ mice, suggesting that cdk activity is required for NPC pathogenesis. Here, we used genetic ablation of the p35 gene to examine the specific involvement of p35, p25, and hence cdk5 activation in NPC neuropathogenesis. We found that lack of p35/p25 does not slow the onset or progression or improve the neuropathology of NPC. Our results provide direct evidence that p35/p25-mediated cdk5 deregulation is not essential for NPC pathology and suggest that similar pathology in AD may also be cdk5 independent.
Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk Ϫ/Ϫ mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.