Nuclear reactions occurring at densities ≈ 10 12 g cm −3 in the crust of a transiently accreting neutron star efficiently maintain the core at a temperature ≈ (5-10) × 10 7 K. When accretion halts, the envelope relaxes to a thermal equilibrium set by the flux from the hot core, as if the neutron star were newly born. For the time-averaged accretion rates ( ∼ < 10 −10 M ⊙ yr −1 ) typical of low-mass X-ray transients, standard neutrino cooling is unimportant and the core thermally reradiates the deposited heat. The resulting luminosity is ∼ 5×10 32 -5×10 33 ergs s −1 and agrees with many observations of transient neutron stars in quiescence. Confirmation of this mechanism would strongly constrain rapid neutrino cooling mechanisms for neutron stars (e.g., a pion condensate). Thermal emission had previously been dismissed as a predominant source of quiescent emission since blackbody spectral fits implied an emitting area much smaller than a neutron star's surface. However, as with thermal emission from radio pulsars, fits with realistic emergent spectra will imply a substantially larger emitting area. Other emission mechanisms, such as accretion or a pulsar shock, can also operate in quiescence and generate intensity and spectral variations over short timescales. Indeed, quiescent accretion may produce gravitationally redshifted metal photoionization edges in the quiescent spectra (detectable with AXAF and XMM ). We discuss past observations of Aql X-1 and note that the low luminosity (< 10 34 ergs s −1 ) X-ray sources in globular clusters and the Be star/X-ray transients are excellent candidates for future study.
It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant 1 , source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place 2 in the redshift range z=10.8 ±1.4, while observations of quasars and Lyman-α galaxies have shown that the process was essentially completed 3,4,5 by z≈6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen (H I) fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare It has long been recognised that GRBs have the potential to be powerful probes of the early universe. Known to be the end product of rare massive stars 11 , GRBs and their afterglows can briefly outshine any other source in the universe, and would be theoretically detectable to z ~ 20 and beyond 12,13 . Their association with individual stars means that they serve as a signpost of star formation, even if their host galaxies are too 5 faint to detect directly. Equally important, precise determination of the hydrogen Lyman-α absorption profile can provide a measure of the neutral fraction of the IGM at the location of the burst 9,10,14,15 . With multiple GRBs at z > 7, and hence lines of sight through the IGM, we could thus trace the process of reionization from its early stages.However, until now the highest redshift GRBs (at z = 6. Ground-based optical observations in the r, i and z filters starting within a few minutes of the burst revealed no counterpart at these wavelengths (see Supplementary Information (SI)).The United Kingdom Infrared Telescope (UKIRT) in Hawaii responded to an automated request, and began observations in the K-band 21 minutes post burst. These images ( Figure 1) revealed a point source at the reported X-ray position, which we concluded was likely to be the afterglow of the GRB. We also initiated further nearinfrared (NIR) observations using the Gemini-North 8-m telescope, which started 75 min after the burst, and showed that the counterpart was only visible in filters redder than about 1.2 µm. In this range the afterglow was relatively bright and exhibited a shallow spectral slope F ν ∝ ν -0.26 , in contrast to the deep limit on any flux in the Y filter (0.97-1.07 µm). Later observations from Chile using the MPI/ESO 2.2m telescope, Gemini South and the Very Large Telescope (VLT) confirmed this finding. The nondetection in the Y-band implies a power-law spectral slope between Y and J steeper than. This is impossible for dust at any redshift, and is a tex...
This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter -present in the core of NSs -is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS , are quasi-constant (within measurement errors, of ∼ 10%) for astrophysically relevant masses (M NS > 0.5 M ⊙ ). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov-Chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS , constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R NS = 9.1 +1.3 −1.5 km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.
We describe new optical images and spectra of POX 52, a dwarf galaxy with an active nucleus that was originally detected in the POX objective-prism survey. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with broad components to the permitted line profiles, and we classify POX 52 as a Seyfert 1 galaxy.The host galaxy appears to be a dwarf elliptical, and its brightness profile is best fit by a Sérsic model with an index of 3.6 ± 0.2 and a total magnitude of M V = −17.6. Applying mass-luminosity-linewidth scaling relations to estimate the black hole mass from the broad Hβ linewidth and nonstellar continuum luminosity, we find M BH ≈ 1.6 × 10 5 M ⊙ . The stellar velocity dispersion in the host galaxy, measured from the Ca II λ8498, 8542 Å lines, is 36 ± 5 km s −1 , also suggestive of a black hole mass of order 10 5 M ⊙ . Further searches for active nuclei in dwarf galaxies can provide unique constraints on the demographics of black holes in the mass range below 10 6 M ⊙ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.