Prenylation of natural compounds adds structural diversity, alters biological activity, and enhances therapeutic potential. Because prenylated compounds often have a low natural abundance, alternative production methods are needed. Metabolic engineering enables natural product biosynthesis from inexpensive biomass, but is limited by the complexity of secondary metabolite pathways, intermediate and product toxicities, and substrate accessibility. Alternatively, enzyme catalyzed prenyl transfer provides excellent regio- and stereo-specificity, but requires expensive isoprenyl pyrophosphate substrates. Here we develop a flexible cell-free enzymatic prenylating system that generates isoprenyl pyrophosphate substrates from glucose to prenylate an array of natural products. The system provides an efficient route to cannabinoid precursors cannabigerolic acid (CBGA) and cannabigerovarinic acid (CBGVA) at >1 g/L, and a single enzymatic step converts the precursors into cannabidiolic acid (CBDA) and cannabidivarinic acid (CBDVA). Cell-free methods may provide a powerful alternative to metabolic engineering for chemicals that are hard to produce in living organisms.
Strains of B. gingivalis were shown to produce collagenolytic activity capable of dissolving reconstituted collagen (type I) fibrils and of cleaving the helical domain of types I. II and III collagens at 22° C. The catalytic activity was dependent on free thiol groups and on metal ions, as indicated by inhibition by thiol blocking reagents and metal chelators. The activity was associated with the bacterial cells and was not secreted to the medium. Under optimal conditions. 100 Units of collagenase per gram cell pellet (wet weight) were released by detergents such as Triton X‐100 and SDS. Zymography of detergent extracts revealed that collagen‐degrading strains, but not an inactive control strain (W), contained a discrete Mr 90 000 gelatin cleaving protease which may be identical to the collagenolytic enzyme. The initial attack on the helical domain of type I collagen occurred near the COOH‐terminus. The a1 and a2 chains were cleaved at the same site, generating a major helical fragment consisting of three shortened (Mr 82 000) a‐chains. Subsequent cleavages of this shortened collagen molecule resulted in generation of multiple fragments from the component a‐chains in the Mr 60 000 to 6000 range. This cleavage pattern was clearly distinct from the characteristic 3/4–1/4 pattern produced by vertebrate collagenases. Type II and III collagens were also cleaved first near the COOH‐terminus, generating fragments of similar size to those produced from type I collagen. In view of its ability to dissolve reconstituted collagen fibrils at 35°C and its ability to attack the helical domain of interstitial collagens in solution at 22°C, we suggest that this enzyme tentatively be classified as a true collagenase.
Microcinematography was used to examine fruiting body development of Myxococcus xanthus. Wild-type cells progress through three distinct phases: a quiescent phase with some motility but little aggregation (0 to 8 h), a period of vigorous motility leading to raised fruiting bodies (8 to 16 h), and a period of maturation during which sporulation is initiated (16 to 48 h). Fruiting bodies are extended vertically in a series of tiers, each involving the addition of a cell monolayer on top of the uppermost layer. A pilA (MXAN_5783) mutant produced less extracellular matrix material and thus allowed closer examination of tiered aggregate formation. A csgA (MXAN_1294) mutant exhibited no quiescent phase, aberrant aggregation in phase 2, and disintegration of the fruiting bodies in the third phase.
This study describes 11 monoclonal antibodies (Mabs) against human fibroblast collagenase that (i) inhibit the specific catalytic activity of the enzyme and/or (ii) react with one or more forms of the enzyme on Western blots. Each of the Mabs specifically immunoprecipitated the Mr 57,000/52,000 procollagenase from [35S]methionine-labeled culture medium. Five Mabs, designated VI-3, VI-4, 2C5, 4A2, and 7C2, inhibited the activity of fibroblast-type collagenase against soluble monomeric collagen and against reconstituted collagen fibrils but did not inhibit the genetically distinct human PMN leukocyte collagenase. The interstitial collagenase produced by human mucosal keratinocytes (SCC-25) was also inhibited, whereas the corresponding enzyme from rat was not. Assignment of epitopes to structural domains within the molecule based on immunoperoxidase staining of Western blots of collagenase and its autocatalytic fragments revealed that 9 of 11 epitopes, including those recognized by 4 inhibitory Mabs, were clustered in a 169-residue domain, which constitutes the NH2-terminal part of the Mr 46,000/42,000 active enzyme. One Mab (X-2a) specifically recognized the Mr 57,000/52,000 zymogen species and failed to react with the active Mr 46,000/42,000 form. The inhibitory Mab VI-3 was used for immunoaffinity purification of procollagenase from culture media with a recovery better than 80% and a yield of approximately 1.4 mg of enzyme/L of medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.