Influenza is thought to be communicated from person to person by multiple pathways. However, the relative importance of different routes of influenza transmission is unclear. To better understand the potential for the airborne spread of influenza, we measured the amount and size of aerosol particles containing influenza virus that were produced by coughing. Subjects were recruited from patients presenting at a student health clinic with influenza-like symptoms. Nasopharyngeal swabs were collected from the volunteers and they were asked to cough three times into a spirometer. After each cough, the cough-generated aerosol was collected using a NIOSH two-stage bioaerosol cyclone sampler or an SKC BioSampler. The amount of influenza viral RNA contained in the samplers was analyzed using quantitative real-time reverse-transcription PCR (qPCR) targeting the matrix gene M1. For half of the subjects, viral plaque assays were performed on the nasopharyngeal swabs and cough aerosol samples to determine if viable virus was present. Fifty-eight subjects were tested, of whom 47 were positive for influenza virus by qPCR. Influenza viral RNA was detected in coughs from 38 of these subjects (81%). Thirty-five percent of the influenza RNA was contained in particles >4 µm in aerodynamic diameter, while 23% was in particles 1 to 4 µm and 42% in particles <1 µm. Viable influenza virus was detected in the cough aerosols from 2 of 21 subjects with influenza. These results show that coughing by influenza patients emits aerosol particles containing influenza virus and that much of the viral RNA is contained within particles in the respirable size range. The results support the idea that the airborne route may be a pathway for influenza transmission, especially in the immediate vicinity of an influenza patient. Further research is needed on the viability of airborne influenza viruses and the risk of transmission.
The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120–950 J/cm2. We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm2 reduced the breaking strength of the straps by 20–51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen.
Size-fractionated aerosol particles were collected in a hospital emergency department to test for airborne influenza virus. Using real-time polymerase chain reaction, we confirmed the presence of airborne influenza virus and found that 53% of detectable influenza virus particles were within the respirable aerosol fraction. Our results provide evidence that influenza virus may spread through the airborne route.
Airborne particles containing influenza and RSV RNA were detected throughout a health care facility. The particles were small enough to remain airborne for an extended time and to be inhaled deeply into the respiratory tract. These results support the possibility that influenza and RSV can be transmitted by the airborne route and suggest that further investigation of the potential of these particles to transmit infection is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.