Reinforcement Learning (RL) is a very complex domain and software for RL is correspondingly complex. We analyse the scope, requirements, and potential for RL software, discuss relevant design issues, survey existing software, and make recommendations for designers. We argue that broad and flexible libraries of reusable software components are valuable from a scientific, as well as practical, perspective, as they allow precise control over experimental conditions, encourage comparison of alternative methods, and allow a fuller exploration of the RL domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.