We report a total synthesis of the alkaloid thienodolin (1a), as well as its 5-chloro isomer 1b and its unsubstituted analogue 1c, in three steps from the corresponding oxindoles 8a−c. The preparation was achieved through an initial Vilsmeier−Haack−Arnold reaction (chloro-formylation) followed by protection at the indole nitrogen, creation of the
The triplex form of DNA is of interest because of a possible biological role as well as the potential therapeutic use of this structure. In this paper the stabilizing effects of two intercalating drugs, ethidium and the quinoxaline derivative 9-OH-B220, on DNA triplexes have been studied by thermal denaturation measurements. The corresponding duplex structures of the DNA triplex systems investigated are either A-tract or normal B-DNA. The largest increases in the triplex melting temperatures caused by the intercalators were found for sequences having A-tract duplex structures. Inserting a single base pair with an N2-amino group in the minor groove, e.g. a G-C pair, breaks up the A-tract duplex structure and also reduces the stabilizing effect of the drugs on the triplex melting temperatures. The large drug-induced increase in triplex melting temperature for complexes having an original duplex A-tract structure is correlated with a low initial melting point of the triplex, not with the triplex being unusually stable in the presence of the drug. Hence, we conclude that the large thermal stabilizing effect exhibited by ethidium and 9-OH-B220 on dTn.dAn-dTn triplexes is partly caused by the intercalators breaking up the intrinsic A-tract structure of the underlying duplex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.