The lithosphere-asthenosphere boundary (LAB) is a first-order structural discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Although it is the most extensive type of plate boundary on the planet, its definitive detection, especially beneath cratons, is proving elusive. Different proxies are used to demarcate the LAB, depending on the nature of the measurement. Here we compare interpretations of the LAB beneath three The seismic LAB beneath cratons is typically regarded as the base of a high-velocity mantle lid, although some workers infer its location based on a distinct change in seismic anisotropy.Surface-wave inversion studies provide depth-constrained velocity models, but are relatively insensitive to the sharpness of the LAB. The S-receiver function method is a promising new seismic technique with complementary characteristics to surface-wave studies, since it is 2 sensitive to sharpness of the LAB but requires independent velocity information for accurate depth estimation. Magnetotelluric (MT) observations have, for many decades, imaged an "electrical asthenosphere" layer at depths beneath the continents consistent with seismic lowvelocity zones. This feature is most easily explained by the presence of a small amount of water in the asthenosphere, possibly inducing partial melt. Depth estimates based on various proxies considered here are similar, lending confidence that existing geophysical tools are effective for mapping the LAB beneath cratons.
The lithosphere-asthenosphere boundary (LAB) separates rigid oceanic plates from the underlying warm ductile asthenosphere. Although a viscosity decrease beneath this boundary is essential for plate tectonics, a consensus on its origin remains elusive. Seismic studies identify a prominent velocity discontinuity at depths thought to coincide with the LAB but disagree on its cause, generally invoking either partial melting or a mantle dehydration boundary as explanations. Here we use sea-floor magnetotelluric data to image the electrical conductivity of the LAB beneath the edge of the Cocos plate at the Middle America trench offshore of Nicaragua. Underneath the resistive oceanic lithosphere, the magnetotelluric data reveal a high-conductivity layer confined to depths of 45 to 70 kilometres. Because partial melts are stable at these depths in a warm damp mantle, we interpret the conductor to be a partially molten layer capped by an impermeable frozen lid that is the base of the lithosphere. A conductivity anisotropy parallel to plate motion indicates that this melt has been sheared into flow-aligned tube-like structures. We infer that the LAB beneath young plates consists of a thin, partially molten, channel of low viscosity that acts to decouple the overlying brittle lithosphere from the deeper convecting mantle. Because this boundary layer has the potential to behave as a lubricant to plate motion, its proximity to the trench may have implications for subduction dynamics.
Magnetotelluric (MT) and seismic data, collected during the MELT experiment at the Southern East Pacific Rise (SEPR) 1,2 , constrain the distribution of melt beneath this mid-ocean-ridge spreading center and also the evolution of the oceanic lithosphere during its early cooling history. In this paper, we focus on structure imaged at distances ~100 to 350 km east of the ridge crest, corresponding to seafloor ages of ~1.3 to 4.5 Ma, where the seismic and electrical conductivity structure is nearly constant, independent of age. Beginning at a depth of about 60 km, there is a large increase in electrical conductivity and a change from isotropic to transversely anisotropic electrical structure with higher conductivity in the direction of fast propagation for seismic waves. Because conductive cooling models predict structure that increases in depth with age, extending to about 30 km at 4.5 Ma, we infer that the structure of young oceanic plates is instead
[1] The electromagnetic data from the Mantle Electromagnetic and Tomography (MELT) experiment are inverted for a two-dimensional transversely anisotropic conductivity structure that incorporates a correction for three-dimensional topographic effects on the magnetotelluric responses. The model space allows for different conductivity values in the along-strike, cross-strike, and vertical directions, along with imposed constraints of model smoothness and closeness among the three directions. Anisotropic models provide a slightly better fit to the data for a given level of model smoothness and are more consistent with other geophysical and laboratory data. The preferred anisotropic model displays a resistive uppermost 60-km-thick mantle independent of plate age, except in the vicinity of the ridge crest. In most inversions, a vertically aligned sheet-like conductor at the ridge crest is especially prominent in the vertical conductivity. Its presence suggests that the melt is more highly concentrated and connected in the vertical direction immediately beneath the rise axis. The melt zone is at least 100 km wide and is asymmetric, having a greater extent to the west. Off-axis, and to the east of the ridge, the mantle is more conductive in the direction of plate spreading at depths greater than 60 km. The flat resistive-conductive boundary at 60 km agrees well with the inferred depth of the dry solidus of peridotite, and the deeper conductive region is consistent with the preferred orientation of olivine inferred from seismic observations. This suggests that the uppermost 60 km represents the region of mantle that has undergone melting at the ridge and has been depleted of water (dissolved hydrogen). By contrast, the underlying mantle has retained a significant amount of water.
Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.