Previously, we have described inhibition of HIV-1 infection by T30177, 5'-(GTGGTGGGTGGGTGGGT)-3', an oligonucleotide that is a potent inhibitor of HIV-1 integrase in vitro (Mazumder et al. (1996) Biochemistry 35, 13762). Here a family of oligonucleotides, analogs of T30177, has been studied. On the basis of thermal denaturation, we show that a folded structure of T30177 is much more stable than that of the thrombin binding aptamer, which only differs with T30177 in the loop sequence. Sequence changes reveal that loop interactions are solely responsible for this observed stability difference. In the presence of K+ ion, the fold of T30695, a designed 16mer derivative, is indeed more stable than T30177. Loop folding within T30695 is very ion selective. Quantitative analysis of thermal denaturation suggests that the loops of T30695, 5'-(GGGTGGGTGGGTGGGT)-3', and T30177 confer the ability to coordinate three equivalents of K+ ion (one bound to the core octet and two bound to the loops); however, the thrombin binding aptamer is shown to bind only one K+ equivalent. Folding kinetics and CD titration demonstrate that K+-induced folding of T30695 and T30177 is a two-step process, consistent with a sequential model in which a first equivalent of K+ binds to the octet core, followed by slow K+-induced rearrangement of the loop domains. Comparing structural stability with the capacity of the folded oligomers to inhibit the HIV-1 integrase enzyme in vitro or HIV-1 infection in cell culture, we have found that the folding and activity data are highly correlated, suggesting that formation of an orderly, ion-coordinated loop structure similar to that in T30177 or T30695 may be a prerequisite for both integrase inhibition and anti-HIV-1 activity.
Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short-and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.
An oligonucleotide (I100-15) composed of only deoxyguanosine and thymidine was able to inhibit human immunodeficiency virus type-1 (HIV-1) in culture assay systems. I100-15 did not block virus entry into cells but did reduce viral-specific transcripts. As assessed by NMR and polyacrylamide gel methods, I100-15 appears to form a structure in which two stacked guanosine tetrads are connected by three two-base long loops. Structure/activity experiments indicated that formation of intramolecular guanosine tetrads was necessary to achieve maximum antiviral activity. The single deoxyguanosine nucleotide present in each loop was found to be extremely important for the overall antiviral activity. The toxicity of I100-15 was determined to be well above the 50% effective dose (ED50) in culture which yielded a high therapeutic index (> 100). The addition of a cholesterol moiety to the 3' terminus of I100-15 (I100-23) reduced the ED50 value to less than 50 nM (from 0.12 microM for I100-15) and increased the duration of viral suppression to greater than 21 days (versus 7-10 days for I100-15) after removal of the drug from infected cell cultures. The favorable therapeutic index of such molecules coupled with the prolonged suppression of HIV-1, suggest that such compounds further warrant investigation as potential therapeutic agents.
An oligonucleotide (T30177) composed entirely of deoxyguanosine and thymidine has previously been shown to fold upon itself in the presence of potassium into a highly stable four-stranded DNA structure containing two stacked deoxyguanosine quartets (G4s). T30177 also protects host cells from the cytopathic effects of human immunodeficiency virus type 1 (HIV-1). We report that this G4 oligonucleotide is the most potent inhibitor of HIV-1 integrase identified to date, with IC50 values in the nanomolar range. Both the number of quartets formed and the sequence of the loops between the quartets are important for optimal activity. T30177 binds to HIV-1 integrase without being processed and blocks the binding of the normal viral DNA substrate to the enzyme. The normal DNA substrate was not able to compete off T30177 binding to HIV-1 integrase, indicating a tight binding of G4s to the enzyme. Experiments with truncated HIV-1 integrases indicate that the N-terminal region containing a putative zinc finger is required for inhibition by T30177 and that T30177 binds better to full-length or deletion mutant integrases containing the zinc finger region than to a deletion mutant consisting of only the central catalytic domain. The N-terminal region of integrase alone is able to bind efficiently to T30177, but not the linear viral DNA substrate, in the presence of zinc. Hence, G4s represent the first class of compounds that inhibit HIV-1 integrase by interacting with the enzyme N-terminal domain. The greater inhibitory potency of T30177 in buffer containing magnesium versus manganese suggests that divalent metal ion coordination along the phosphodiester backbone may play a role in the inhibitory activity. T30177 inhibited HIV-2 integrase with similar potency as HIV-1 but inhibited feline and simian immunodeficiency virus integrases at higher concentrations, suggesting selectivity can be achieved. We propose that novel AIDS therapies could be based upon guanosine quarters as inhibitors of HIV-1 integrase.
We have identified a potentially therapeutic anti-human immunodeficiency virus (HIV)-1 oligonucleotide composed entirely of deoxyguanosines and thymidines (T30177, also known as AR177: 5-g*tggtgggtgggtggg*t-3, where asterisk indicates phosphorothioate linkage). In acute assay systems using human T-cells, T30177 and its total phosphodiester homologue T30175 inhibited HIV-1-induced syncytium production by 50% at 0.15 and 0.3 M, respectively. Under physiological conditions, the sequence and composition of the 17-mer favors the formation of a compact, intramolecularly folded structure dominated by two stacked guanine quartet motifs that are connected by three loops of TGs. The molecule is stabilized by the coordination of a potassium ion between the two stacked quartets. We now show that these guanine quartet-containing oligonucleotides are highly resistant to serum nucleases, with t 1 ⁄2 of 5 h and >4 days for T30175 and T30177, respectively. Both oligonucleotides were internalized efficiently by cells, with intracellular concentrations reaching 5-10-fold above the extracellular levels after 24 h of incubation. In contrast, single-base mutated variants or random sequence control oligonucleotides that could not form the compactly folded structure had markedly reduced half-lives (t 1 ⁄2 from ϳ3 to 7 min), low cellular uptake, and no sequencespecific anti-HIV-1 activity. These data suggest that the tertiary structure of an oligonucleotide is a key determinant of its nuclease resistance, cellular uptake kinetics, and biological efficacy.Guanine-rich nucleic acid strands, under physiological salt and pH conditions, can adopt a higher order, thermodynamically stable conformation containing square-planar arrangement of four guanines that are hydrogen-bonded in the Hoogsteen manner and stabilized by a monovalent cation (1-4). Depending upon the base composition, sequence, and concentration of the nucleic acids, guanine quartet-containing structures (or G-quartets) 1 can be generated from DNA or RNA, either by the intramolecular folding of a single G-rich strand, or by the association of multiple strands (1-7). Believed to be ubiquitous in nature, G-quartets are proposed to participate in diverse biological processes including the modulation of telomere activity, dimerization of HIV RNA, and site-specific genetic recombination in immunoglobulin switch regions (5-9). In addition, using a combination of rational drug design and combinatorial screening methods, several biologically active oligonucleotides have been described, each of unique specificity and the potential to form G-quartet motifs (10 -15). In particular, we have identified a family of deoxyguanosine-and thymidine-rich (deoxyribo)oligonucleotides that are potent inhibitors of HIV-1 expression in standardized cell culture-based assays (16,17). One such inhibitor is T30175, a 17-mer oligonucleotide synthesized with a natural phosphodiester backbone (Table I). A more potent version, T30177, has the same sequence, but contains a single phosphorothioate internucleosid...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.