Extracellular spiking activity and local field potentials (LFP) were recorded via tetrodes at the output of the antennal lobe (AL) in the honeybee brain during olfactory conditioning. Odors induce reliable rate responses that consist of either phasic-tonic responses, or complex responses with odor-specific profiles. In addition, odors evoke consistent responses of LFP oscillations in the 50-Hz band during the phasic ON-response to odor stimulation, and variable LFP responses at other frequency bands during the sustained response. A principal component analysis of the ensemble activity during differential conditioning consistently indicates the largest changes in response to the learned odor (conditioned stimulus; CS+). Relative LFP power increases for CS+ in the 15-40-Hz frequency band during the sustained response, and decreases for frequencies above 45 Hz. To quantify the relationship between these population responses given by the ensemble spiking activity and LFP, we show that for CS+ the learning-related changes in the degree of the phase-locked spiking activity correlate with the power changes in the corresponding frequency bands. Our results indicate associative plasticity in the AL of the bee leading to both enhancement and decrease of neuronal response rates. LFP power changes and the correlated changes in the locking between spikes and LFP at different frequencies observed for the learned odor serve as further evidence for a learning-induced restructuring of temporal ensemble representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.