Objective-Perivascular adipose tissue (PVAT) exerts an anticontractile effect in response to various vasoconstrictor agonists, and this is lost in obesity. A recent study reported that bariatric surgery reverses the damaging effects of obesity on PVAT function. However, PVAT function has not been characterized after weight loss induced by caloric restriction, which is often the first line treatment for obesity. Approach and Results-Contractility studies were performed using wire myography on small mesenteric arteries with and without PVAT from control, diet-induced obese, calorie restricted and sustained weight loss rats. Changes in the PVAT environment were assessed using immunohistochemistry. PVAT from healthy animals elicited an anticontractile effect in response to norepinephrine. This was abolished in diet-induced obesity through a mechanism involving increased local tumor necrosis factor-α and reduced nitric oxide bioavailability within PVAT. Sustained weight loss led to improvement in PVAT function associated with restoration of adipocyte size, reduced tumor necrosis factor-α, and increased nitric oxide synthase function. This was associated with reversal of obesity-induced hypertension and normalization of plasma adipokine levels, including leptin and insulin. Conclusions-We have shown that diet-induced weight loss reverses obesity-induced PVAT damage through a mechanism involving reduced inflammation and increased nitric oxide synthase activity within PVAT. These data reveal inflammation and nitric oxide synthase, particularly endothelial nitric oxide synthase, as potential targets for the treatment of PVAT dysfunction associated with obesity and metabolic syndrome.
Objective— Healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on resistance arteries which is vital in regulating arterial tone. Activation of β 3 -adrenoceptors by sympathetic nerve–derived NA (noradrenaline) may be implicated in this effect and may stimulate the release of the vasodilator adiponectin from adipocytes. Understanding the mechanisms responsible is vital for determining how PVAT may modify vascular resistance in vivo. Approach and Results— Electrical field stimulation profiles of healthy C57BL/6J mouse mesenteric resistance arteries were characterized using wire myography. During electrical field stimulation, PVAT elicits a reproducible anticontractile effect, which is endothelium independent. To demonstrate the release of an anticontractile factor, the solution surrounding stimulated exogenous PVAT was transferred to a PVAT-denuded vessel. Post-transfer contractility was significantly reduced confirming that stimulated PVAT releases a transferable anticontractile factor. Sympathetic denervation of PVAT using tetrodotoxin or 6-hydroxydopamine completely abolished the anticontractile effect. β 3 -adrenoceptor antagonist SR59203A reduced the anticontractile effect, although the PVAT remained overall anticontractile. When the antagonist was used in combination with an OCT3 (organic cation transporter 3) inhibitor, corticosterone, the anticontractile effect was completely abolished. Application of an adiponectin receptor-1 blocking peptide significantly reduced the anticontractile effect in +PVAT arteries. When used in combination with the β 3 -adrenoceptor antagonist, there was no further reduction. In adiponectin knockout mice, the anticontractile effect is absent. Conclusions— The roles of PVAT are 2-fold. First, sympathetic stimulation in PVAT triggers the release of adiponectin via β 3 -adrenoceptor activation. Second, PVAT acts as a reservoir for NA, preventing it from reaching the vessel and causing contraction.
Background and PurposeIn response to noradrenaline, healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on adjacent small arterial tissue. Organ bath solution transfer experiments have demonstrated the release of PVAT‐derived relaxing factors that mediate this function. The present studies were designed to investigate the mechanism responsible for the noradrenaline‐induced PVAT anticontractile effect.Experimental Approach In vitro rat small arterial contractile function was assessed using wire myography in the presence and absence of PVAT and the effects of sympathomimetic stimulation on the PVAT environment explored using Western blotting and assays of organ bath buffer.Key ResultsPVAT elicited an anticontractile effect in response to noradrenaline but not phenylephrine stimulation. In arteries surrounded by intact PVAT, the β3‐adrenoceptor agonist, CL‐316243, reduced the vasoconstrictor effect of phenylephrine but not noradrenaline. Kv7 channel inhibition using XE 991 reversed the noradrenaline‐induced anticontractile effect in exogenously applied PVAT studies. Adrenergic stimulation of PVAT with noradrenaline and CL‐316243, but not phenylephrine, was associated with increased adipocyte‐derived NO production, and the contractile response to noradrenaline was augmented following incubation of exogenous PVAT with L‐NMMA. PVAT from eNOS−/− mice had no anticontractile effect. Assays of adipocyte cAMP demonstrated an increase with noradrenaline stimulation implicating Gαs signalling in this process.Conclusions and ImplicationsWe have shown that adipocyte‐located β3‐adrenoceptor stimulation leads to activation of Gαs signalling pathways with increased cAMP and the release of adipocyte‐derived NO. This process is dependent upon Kv7 channel function. We conclude that adipocyte‐derived NO plays a central role in anticontractile activity when rodent PVAT is stimulated by noradrenaline.
Purpose Perivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function. Methods Vascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT. Results High fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored. Conclusion Loss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.