The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, small cycling cells located at crypt bottoms1, 2. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells, that are known to produce bactericidal products such as lysozyme and cryptdins/defensins3. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells4. Here, we note a close physical association of Lgr5 stem cells with Paneth cells in vivo and in vitro. CD24+ Paneth cells express EGF, TGFα, Wnt3 and the Notch-ligand Dll4, all essential signals for stem cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells dramatically improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24+ cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.
The Wnt target gene Lgr5 marks actively dividing stem cells in Wnt-driven, self-renewing tissues such as small intestine and colon1, stomach2 and hair follicles3. A 3D culture system allows long-term clonal expansion of single Lgr5+ stem cells into transplantable organoids that retain many characteristics of the original epithelial architecture2, 4, 5. A crucial component of the culture medium is the Wnt agonist Rspo16, the recently discovered ligand of Lgr57, 8. Here we show that Lgr5-LacZ is not expressed in healthy adult liver, yet that small Lgr5-LacZ+ cells appear near bile ducts upon damage, coinciding with robust activation of Wnt signaling. As shown by lineage tracing using a novel Lgr5-ires-CreERT2 knock-in allele, damage-induced Lgr5+ cells generate hepatocytes and bile ducts in vivo. Single Lgr5+ cells from damaged liver can be clonally expanded as organoids in Rspo1-based culture medium over multiple months. Such clonal organoids can be induced to differentiate in vitro and to generate functional hepatocytes upon transplantation into FAH−/− mice. These findings imply that previous observations on Lgr5+ stem cells in actively self-renewing tissues extend to damage-induced stem cells in a tissue with a low rate of spontaneous proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.