Resistance to Leishmania major in mice is associated with the appearance of distinct T helper type 1 (Th1) and Th2 subsets. T cells from lymph nodes draining cutaneous lesions of resistant mice are primarily interferon gamma (IFN-gamma)-producing Th1 cells. In contrast, T cells from susceptible mice are principally Th2 cells that generate interleukin 4 (IL-4). Although existing evidence is supportive of a role for IFN-gamma in the generation of Th1 cells, additional factors may be required for a protective response to be maintained. A potential candidate is IL-12, a heterodimeric cytokine produced by monocytes and B cells that has multiple effects on T and natural killer cell function, including inducing IFN-gamma production. Using an experimental leishmanial model we have observed that daily intraperitoneal administration at the time of parasite challenge of either 0.33 micrograms IL-12 (a consecutive 5 d/wk for 5 wk) or 1.0 micrograms IL-12 per mouse (only a consecutive 5 d) caused a > 75% reduction in parasite burden at the site of infection, in highly susceptible BALB/c mice. Delay of treatment by 1 wk had less of a protective effect. Concomitant with these protective effects was an increase in IFN-gamma and a decrease in IL-4 production, as measured by enzyme-linked immunosorbent assay of supernatants generated from popliteal lymph node cells stimulated with leishmanial antigen in vitro. The reduction in parasite numbers induced by IL-12 therapy was still apparent at 10 wk postinfection. In addition, we observed that the administration of a rabbit anti-recombinant murine IL-12 polyclonal antibody (200 micrograms i.p. every other day for 25 d) at the time of infection to resistant C57Bl/6 mice exacerbated disease. These effects were accompanied by a shift in IFN-gamma production in vitro by antigen-stimulated lymph node cells indicative of a Th2-like response. These findings suggest that IL-12 has an important role in initiating a Th1 response and protective immunity.
Elevated MPO levels predict future risk of CAD in apparently healthy individuals. This study suggests that inflammatory activation precedes the onset of overt CAD by many years.
High plasma levels of soluble P-selectin are associated with thrombotic disorders and may predict future cardiovascular events. Mice with high levels of soluble P-selectin have more microparticles in their plasma than do normal mice. Here we show that chimeras of P-selectin and immunoglobulin (P-sel-Ig) induced formation of procoagulant microparticles in human blood through P-selectin glycoprotein ligand-1 (PSGL-1; encoded by the Psgl1 gene, officially known as Selpl). In addition, Psgl1-/- mice produced fewer microparticles after P-sel-Ig infusion and did not spontaneously increase their microparticle count in old age as do wild-type mice. Injected microparticles specifically bound to thrombi and thus could be involved in thrombin generation at sites of injury. Infusion of P-sel-Ig into hemophilia A mice produced a 20-fold increase over control immunoglobulin in microparticles containing tissue factor. This significantly improved the kinetics of fibrin formation in the hemophilia A mice and normalized their tail-bleeding time. P-sel-Ig treatment could become a new approach to sustained control of bleeding in hemophilia.
Background-ARC1779 is a therapeutic aptamer antagonist of the A1 domain of von Willebrand Factor (vWF), the ligand for receptor glycoprotein 1b on platelets. ARC1779 is being developed as a novel antithrombotic agent for use in patients with acute coronary syndromes. Methods and Results-This was a randomized, double-blind, placebo-controlled study in 47 healthy volunteers of doses of ARC1779 from 0.05 to 1.0 mg/kg. Pharmacodynamic effects were measured by an ELISA for free vWF A1 binding sites and by a platelet function analyzer. In terms of pharmacokinetics, the concentration-time profile of ARC1779 appeared monophasic. The observed concentration and area under the curve were dose proportional. The mean apparent elimination half-life was Ϸ2 hours, and mean residence time was Ϸ3 hours. The mean apparent volumes of distribution (at steady state and during terminal phase) were approximately one half the blood volume, suggesting that ARC1779 distribution is in the central compartment. The mean clearance ranged from Ϸ10% to Ϸ21% of the glomerular filtration rate, suggesting that renal filtration may not be a major mechanism of clearance of ARC1779. Inhibition of vWF A1 binding activity was achieved with an EC 90 value of 2.0 g/mL (151 nmol/L) and of platelet function with an EC 90 value of 2.6 g/mL (196 nmol/L). ARC1779 was generally well tolerated, and no bleeding was observed. Adverse events tended to be minor and not dose related. Conclusions-This is the first-in-human evaluation of a novel aptamer antagonist of vWF. ARC1779 produced dose-and concentration-dependent inhibition of vWF activity and platelet function with duration of effect suitable for the intended clinical use in acute coronary syndromes.
Summary. Background: von Willebrand factor (VWF) has a role in both hemostasis and thrombosis. Platelets adhere to damaged arteries by interactions between the VWF A1-domain and glycoprotein Ib receptors under conditions of high shear. This initial platelet binding event stimulates platelet activation, recruitment, and activation of the clotting cascade, promoting thrombus formation. Objective: To characterize the inhibitory activity of a VWF inhibitory aptamer. Methods: Using in vitro selection, aptamer stabilization, and conjugation to a 20-kDa poly(ethylene glycol), we generated a nuclease-resistant aptamer, ARC1779, that binds to the VWF A1-domain with high affinity (K D 2 nM). The aptamer was assessed for inhibition of VWF-induced platelet aggregation. In vitro inhibition of platelet adhesion was assessed on collagen-coated slides and injured pig aortic segments. In vivo activity was assessed in a cynomolgus monkey carotid electrical injury thrombosis model. Results and Conclusion: ARC1779 inhibited botrocetin-induced platelet aggregation (IC 90 300 nM) and shear force-induced platelet aggregation (IC 95 400 nM). It reduced adhesion of platelets to collagen-coated matrices and formation of platelet thrombi on denuded porcine arteries. ARC1779 also inhibited the formation of occlusive thrombi in cynomolgus monkeys. We have discovered a novel anti-VWF aptamer that could have therapeutic use as an anti-VWF agent in the setting of VWFmediated thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.