Nitric oxide (NO) inhibits vascular inflammation, but the molecular basis for its anti-inflammatory properties is unknown. We show that NO inhibits exocytosis of Weibel-Palade bodies, endothelial granules that mediate vascular inflammation and thrombosis, by regulating the activity of N-ethylmaleimide-sensitive factor (NSF). NO inhibits NSF disassembly of soluble NSF attachment protein receptor (SNARE) complexes by nitrosylating critical cysteine residues of NSF. NO may regulate exocytosis in a variety of physiological processes, including vascular inflammation, neurotransmission, thrombosis, and cytotoxic T lymphocyte cell killing.
High plasma levels of soluble P-selectin are associated with thrombotic disorders and may predict future cardiovascular events. Mice with high levels of soluble P-selectin have more microparticles in their plasma than do normal mice. Here we show that chimeras of P-selectin and immunoglobulin (P-sel-Ig) induced formation of procoagulant microparticles in human blood through P-selectin glycoprotein ligand-1 (PSGL-1; encoded by the Psgl1 gene, officially known as Selpl). In addition, Psgl1-/- mice produced fewer microparticles after P-sel-Ig infusion and did not spontaneously increase their microparticle count in old age as do wild-type mice. Injected microparticles specifically bound to thrombi and thus could be involved in thrombin generation at sites of injury. Infusion of P-sel-Ig into hemophilia A mice produced a 20-fold increase over control immunoglobulin in microparticles containing tissue factor. This significantly improved the kinetics of fibrin formation in the hemophilia A mice and normalized their tail-bleeding time. P-sel-Ig treatment could become a new approach to sustained control of bleeding in hemophilia.
Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Recent research has indicated that CXCR3/chemokines interactions that orchestrate haematopoetic cell movement are implicated in the metastatic process of malignant tumours, including that of CRC cells to lymph nodes. To date, however, the contribution of CXCR3 to liver and lung metastasis in CRC has not been addressed. To determine whether CXCR3 receptors regulate malignancy-related properties of CRC cells, we have used CXCR3-expressing CRC cell lines of human (HT29 cells) and murine (C26 cells) origins that enable the development of liver and lung metastases when injected into immunodeficient and immunocompetent mice, respectively, and assessed the effect of CXCR3 blockade using AMG487, a small molecular weight antagonist. In vitro, activation of CXCR3 on human and mouse CRC cells by its cognate ligands induced migratory and growth responses, both activities being abrogated by AMG487. In vivo, systemic CXCR3 antagonism by preventive or curative treatments with AMG487 markedly inhibited the implantation and the growth of human and mouse CRC cells within lung without affecting that in the liver. In addition, we measured increased levels of CXCR3 and ligands expression within lung nodules compared with liver tumours. Altogether, our findings indicate that activation of CXCR3 receptors by its cognate ligands facilitates the implantation and the progression of CRC cells within lung tissues and that inhibition of this axis decreases pulmonary metastasis of CRC in two murine tumour models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.