Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Recent research has indicated that CXCR3/chemokines interactions that orchestrate haematopoetic cell movement are implicated in the metastatic process of malignant tumours, including that of CRC cells to lymph nodes. To date, however, the contribution of CXCR3 to liver and lung metastasis in CRC has not been addressed. To determine whether CXCR3 receptors regulate malignancy-related properties of CRC cells, we have used CXCR3-expressing CRC cell lines of human (HT29 cells) and murine (C26 cells) origins that enable the development of liver and lung metastases when injected into immunodeficient and immunocompetent mice, respectively, and assessed the effect of CXCR3 blockade using AMG487, a small molecular weight antagonist. In vitro, activation of CXCR3 on human and mouse CRC cells by its cognate ligands induced migratory and growth responses, both activities being abrogated by AMG487. In vivo, systemic CXCR3 antagonism by preventive or curative treatments with AMG487 markedly inhibited the implantation and the growth of human and mouse CRC cells within lung without affecting that in the liver. In addition, we measured increased levels of CXCR3 and ligands expression within lung nodules compared with liver tumours. Altogether, our findings indicate that activation of CXCR3 receptors by its cognate ligands facilitates the implantation and the progression of CRC cells within lung tissues and that inhibition of this axis decreases pulmonary metastasis of CRC in two murine tumour models.
Increased CCL5 levels are markers of an unfavourable outcome in patients with melanoma, breast, cervical, prostate, gastric or pancreatic cancer. Here, we have assessed the role played by CCL5/CCR5 interactions in the development of colon cancer. To do so, we have examined a number of human colorectal carcinoma clinical specimens and found CCL5 and its receptors over-expressed within primary as well as liver and pulmonary metastases of patients compared to healthy tissues. In vitro, CCL5 increased the growth and migratory responses of colon cancer cells from both human and mouse origins. In addition, systemic treatment of mice with CCL5-directed antibodies reduced the extent of development of subcutaneous colon tumors, of liver metastases and of peritoneal carcinosis. Consistently, we found increased numbers of CD45-immunoreactive cells within the stroma of the remaining lesions as well as at the interface with the healthy tissue. In contrast, selective targeting of CCR5 through administration of TAK-779, a CCR5 antagonist, only partially compromised colon cancer progression. Furthermore, CCL5 neutralization rendered the tumors more sensitive to a PDGFRβ-directed strategy in mice, this combination regimen offering the greatest protection against liver metastases and suppressing macroscopic peritoneal carcinosis. Collectively, our data demonstrate the involvement of CCL5 in the pathogenesis of colorectal carcinoma and point to its potential value as a therapeutic target.
Numerous studies using erythropoietin (EPO) gene delivery vectors, either viral or nonviral, have shown uncontrolled EPO expression leading to transient or sustained erythrocytosis and, more recently, severe autoimmune anemia. Therefore, there is a need to develop other EPO gene delivery systems that allow sustained and adjustable expression of EPO. We have examined a new approach of delivering plasmid encoding mouse EPO cDNA into mouse skeletal muscle, using an amphiphilic block copolymer. Repeated injections of low doses of block copolymer-EPOcDNA formulations increased hematocrit in a dose-dependent manner for more than 9 months, without any initial overshoot. Low doses of block copolymer-EPOcDNA formulations prevented autoimmune anemia in immunocompetent Swiss mice and prevented or reversed chronic anemia in an acquired mouse model of renal failure. We conclude that repeated injections of low doses of block copolymer-DNA formulations that do not induce (1) inflammation at the injection site, (2) overexpression of EPO, or (3) the production of anti-EPO neutralizing auto-antibodies hold promise for in vivo expression of therapeutic proteins, in particular for systemic delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.