Every year, the poultry industry produces a large number of by-products such as chicken heads containing a considerable proportion of proteins, particularly collagen. To prepare gelatin is one of the possibilities to advantageously utilize these by-products as raw materials. The aim of the paper was to process chicken heads into gelatins. An innovative method for conditioning starting raw material was using the proteolytic enzyme. Three technological factors influencing the yield and properties of extracted gelatins were monitored including the amount of enzyme used in the conditioning of the raw material (0.4% and 1.6%), the time of the conditioning (18 and 48 h), and the first gelatin extraction time (1 and 4 h). The gelatin yield was between 20% and 36%. The gelatin gel strength ranged from 113 to 355 Bloom. The viscosity of the gelatin solution was determined between 1.4 and 9.5 mPa.s. The content of inorganic solids varied from 2.3% to 3.9% and the melting point of the gelatin gel was recorded between 34.5 and 42.2 °C. This study has shown that gelatin obtained from chicken heads has a promising potential with diverse possible applications in the food industry, pharmacy, and cosmetics.
In the European Union (EU), about five tons of poultry by-product tissues are produced every year. Due to their high collagen content, they represent a significant raw material source for gelatine production. The aim of the paper was the biotechnological preparation of gelatine from chicken feet. The influence of selected process factors on the gelatine yield, gel strength, viscosity, and ash of gelatine was observed; a two-level factor design of experiments with three variable process factors (enzyme addition, enzyme treatment time, and gelatine extraction time) was applied. After grinding and separating soluble proteins and fat, the purified raw material was treated in water at pH 7.5 with the addition of endoprotease at 23 °C and after thorough washing with water at 80 °C, gelatine was extracted. By the suitable choice of process conditions, gelatine with high gel strength (220–320 bloom), low ash content (<2.0%) and viscosity of 3.5–7.3 mPa·s can be prepared. The extraction efficiency was 18–38%. The presented technology is innovative mainly by the enzymatic processing of the source raw material, which is economically, technologically, and environmentally beneficial for manufacturers. Chicken gelatines are a suitable alternative to gelatines made from mammals or fish, and can be used in many food, pharmaceutical, and biomedical applications.
Phosphates offer a range of possibilities when used in meat and poultry productions. Food grade phosphates are used in meat products for several reasons such as changing and/or stabilizing of pHvalue, increasing water holding capacity in order to lead to higher yields, decreasing losses of weight in cooking, improving texture and sensory properties (tenderness, juiciness, color and flavor), extending shelf-life, etc. In addition, phosphates in meat products are also sources of the supply of phosphorus for consumers through diet, which is an essential mineral for the lives of humans. This review is focused on phosphates' properties, functions, application in meat and poultry products as well as influence on health.
Honey, honey extracts, and bee products belong to traditionally used bioactive molecules in many areas. The aim of the study was primarily to evaluate the effect of cosmetic matrices containing honey and bee products on the skin. The study is complemented by a questionnaire survey on the knowledge and awareness of the effects and potential uses of bee products. The effect of bee molecules at various concentrations was observed by applying 12 formulations to the skin of the volar side of the forearm by non-invasive bioengineering methods on a set of 24 volunteers for 48 h. Very good moisturizing properties have been found in matrices with the glycerin extract of honey. Matrices containing forest honey had better moisturizing effects than those containing flower honey. Barrier properties were enhanced by gradual absorption, especially in formulations with both glycerin and aqueous honey extract. The observed organoleptic properties of the matrices assessed by sensory analysis through 12 evaluators did not show statistically significant differences except for color and spreadability. There are differences in the ability to hydrate the skin, reduce the loss of epidermal water, and affect the pH of the skin surface, including the organoleptic properties between honey and bee product matrices according to their type and concentration.
Poultry meat-processing industry produces considerably large amounts of by-products (such as chicken skins, heads, feathers, viscera, bones and legs) containing significant volumes of proteins, particularly collagen. One of the possibilities of advantageous utilization of these under-used by-products can be their application as a raw material rich in collagen for preparation of gelatine, a partial hydrolysate of collagen. In the present study, chicken skins obtained as a by-product from the chicken-breast processing were purified from non-collagen proteins, pigments and fats. Collagen was treated with proteolytic enzymes and the gelatine extraction was performed in distilled water at temperatures of 40, 50, 60, 70 and 80 °C during the constant extraction time of 60 min. The influence of the technological conditions on gelatine functional properties including viscosity, clarity, water holding and fat binding capacity, emulsifying and foaming properties was explored. Certain functional properties of prepared gelatines were significantly affected by the extraction temperature, while on some other properties the extraction temperature had no significant effect. Viscosity of prepared chicken skin gelatines was in the range from 3 to 5.7 mPa.s, clarity from 1.5 to 2%, water holding capacity from 3.8 to 5.6 mL.g-1, fat binding capacity from 0.9 to 1.3 mL.g-1, emulsion capacity from 35 to 50%, emulsion stability from 73 to 88%, foaming capacity from 18 to 61% and finally foaming stability was from 4 to 39%. Chicken skin gelatines were compared with commercial food grade pork and beef gelatines. Prepared chicken skin gelatines showed better viscosity, fat binding capacity and foaming stability than mammalian gelatines, while water holding capacity, emulsifying stability and foaming capacity were not as good as in beef and pork gelatines. Emulsifying capacity was comparable with commercial gelatines. Therefore, chicken skin gelatine has the potential as an alternative to traditional gelatines from mammalian sources, such as pork or beef bones and skins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.