[1] Satellite data reveal unusually low Arctic sea ice coverage during the summer of 2007, caused in part by anomalously high temperatures and southerly winds. The extent and area of the ice cover reached minima on 14 September 2007 at 4.1 Â 10 6 km 2 and 3.6 Â 10 6 km 2 , respectively. These are 24% and 27% lower than the previous record lows, both reached on 21 September 2005, and 37% and 38% less than the climatological averages. Acceleration in the decline is evident as the extent and area trends of the entire ice cover (seasonal and perennial ice) have shifted from about À2.2 and À3.0% per decade in 1979 -1996 to about À10.1 and À10.7% per decade in the last 10 years. The latter trends are now comparable to the high negative trends of À10.2 and À11.4% per decade for the perennial ice extent and area, 1979 -2007. Citation: Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock (2008), Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703,
The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 3 10 6 km 2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of 20.94 during the growth season and 20.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at 20.96 during the growth season and 20.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.
Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI‐SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at −3.88%/decade and −4.37%/decade, respectively, compared to an average of −4.36%/decade and −4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.
This study applies an indicators framework to investigate climate drivers of tundra vegetation trends and variability over the 1982–2019 period. Previously known indicators relevant for tundra productivity (summer warmth index (SWI), coastal spring sea-ice (SI) area, coastal summer open-water (OW)) and three additional indicators (continentality, summer precipitation, and the Arctic Dipole (AD): second mode of sea level pressure variability) are analyzed with maximum annual Normalized Difference Vegetation Index (MaxNDVI) and the sum of summer bi-weekly (time-integrated) NDVI (TI-NDVI) from the Advanced Very High Resolution Radiometer time-series. Climatological mean, trends, and correlations between variables are presented. Changes in SI continue to drive variations in the other indicators. As spring SI has decreased, summer OW, summer warmth, MaxNDVI, and TI-NDVI have increased. However, the initial very strong upward trends in previous studies for MaxNDVI and TI-NDVI are weakening and becoming spatially and temporally more variable as the ice retreats from the coastal areas. TI-NDVI has declined over the last decade particularly over High Arctic regions and southwest Alaska. The continentality index (CI) (maximum minus minimum monthly temperatures) is decreasing across the tundra, more so over North America than Eurasia. The relationship has weakened between SI and SWI and TI-NDVI, as the maritime influence of OW has increased along with total precipitation. The winter AD is correlated in Eurasia with spring SI, summer OW, MaxNDVI, TI-NDVI, the CI and total summer precipitation. This winter connection to tundra emphasizes the role of SI in driving the summer indicators. The winter (DJF) AD drives SI variations which in turn shape summer OW, the atmospheric SWI and NDVI anomalies. The winter and spring indicators represent potential predictors of tundra vegetation productivity a season or two in advance of the growing season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.