Rare diseases (RDs) are uncommon as individual diagnoses, but as a group contribute to an enormous disease burden globally. However, partly due the low prevalence and high diversity of individual RDs, this category of diseases is understudied and under-resourced. The advent of large, standardised genetics databases has enabled high-throughput, comprehensive approaches that uncover new insights into the multi-scale aetiology of thousands of diseases. Here, using the Human Phenotype Ontology (9,677 annotated phenotypes) and multiple single-cell transcriptomic atlases (77 human cell types and 38 mouse cell types), we conducted >688,000 enrichment tests (x100,000 bootstrap iterations each) to identify >13,888 genetically supported cell type-phenotype associations. Our results recapitulate well-known cell type-phenotype relationships, and extend our understanding of these diseases by pinpointing the genes linking phenotypes to specific cell (sub)types. We also reveal novel cell type-phenotype relationships across disparate branches of clinical disease (e.g. the nervous, cardiovascular, and immune systems). Next, we introduce a computational pipeline to prioritise gene targets with high cell type-specificity to minimise off-target effects and maximise therapeutic potential. To broaden the impact of our study, we have released two R packages to fully replicate our analyses, as well as a series of interactive web apps so that stakeholders from a variety of backgrounds may further explore and utilise our findings. Together, we present a promising avenue for systematically and robustly uncovering the multi-scale aetiology of RDs at scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.