Members of the tumor necrosis factor (TNF)-nerve growth factor (NGF) receptor family have been shown to be important costimulatory molecules for cellular activation. 4-1BB and Ox40 are two recently described members of this protein family which are expressed primarily on activated T cells. To gain insight into the signaling pathways employed by these factors, yeast two-hybrid library screens were performed with the cytoplasmic domains of 4-1BB and Ox40 as baits. TNF receptor-associated factor 2 (TRAF2) was identified as an interacting protein in both screens. The ability of both 4-1BB and Ox40 to interact with TRAF2 was confirmed in mammalian cells by coimmunoprecipitation studies. When the binding of the receptors to other TRAF proteins was investigated, 4-1BB and Ox40 displayed distinct binding patterns. While 4-1BB bound TRAF2 and TRAF1, Ox40 interacted with TRAF3 and TRAF2. Using deletion and alanine scanning analysis, we defined the elements in the cytoplasmic domains of both receptors that mediate these interactions. The 4-1BB receptor was found to have two independent stretches of acidic residues that can mediate association of the TRAF molecules. In contrast, a single TRAF binding domain was identified in the cytoplasmic tail of Ox40. The cytoplasmic domains of both receptors were shown to activate nuclear factor kappaB in a TRAF-dependent manner. Taken together, our results indicate that 4-1BB and Ox40 bind TRAF proteins to initiate a signaling cascade leading to activation of nuclear factor kappaB.
A variant of the glycoprotein CD44 (CD44v) that shares sequences with variants causally involved in metastasis formation is transiently expressed on B and T lymphocytes and macrophages after antigenic stimulation and in the postnatal period. Antibodies to the variant hinder in vivo activation of both B and T cells. The observation that a protein domain that is expressed on CD44 and required for the lymphatic spread of tumor cells can catalyze an essential step in the process of lymphocyte activation supports the idea that metastasizing tumor cells mimic lymphocyte behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.