Standardized and reproducible preclinical models that recapitulate the dynamics of prostate cancer are urgently needed. We established a bank of transplantable patient-derived prostate cancer xenografts that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development. Xenografts preserved the histopathology, genome architecture, and global gene expression of donor tumors. Moreover, their aggressiveness matched patient observations, and their response to androgen withdrawal correlated with tumor subtype. The panel includes the first xenografts generated from needle biopsy tissue obtained at diagnosis. This advance was exploited to generate independent xenografts from different sites of a primary site, enabling functional dissection of tumor heterogeneity. Prolonged exposure of adenocarcinoma xenografts to androgen withdrawal led to castration-resistant prostate cancer, including the first-in-field model of complete transdifferentiation into lethal neuroendocrine prostate cancer. Further analysis of this model supports the hypothesis that neuroendocrine prostate cancer can evolve directly from adenocarcinoma via an adaptive response and yielded a set of genes potentially involved in neuroendocrine transdifferentiation. We predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology. Cancer Res; 74(4); 1272-83. Ó2013 AACR.
Purpose: Although novel agents targeting the androgen–androgen receptor (AR) axis have altered the treatment paradigm of metastatic castration-resistant prostate cancer (mCRPC), development of therapeutic resistance is inevitable. In this study, we examined whether AR gene aberrations detectable in circulating cell-free DNA (cfDNA) are associated with resistance to abiraterone acetate and enzalutamide in mCRPC patients. Experimental Design: Plasma was collected from 62 mCRPC patients ceasing abiraterone acetate (n = 29), enzalutamide (n = 19), or other agents (n = 14) due to disease progression. DNA was extracted and subjected to array comparative genomic hybridization (aCGH) for chromosome copy number analysis, and Roche 454 targeted next-generation sequencing of exon 8 in the AR. Results: On aCGH, AR amplification was significantly more common in patients progressing on enzalutamide than on abiraterone or other agents (53% vs. 17% vs. 21%, P = 0.02, χ2). Missense AR exon 8 mutations were detected in 11 of 62 patients (18%), including the first reported case of an F876L mutation in an enzalutamide-resistant patient and H874Y and T877A mutations in 7 abiraterone-resistant patients. In patients switched onto enzalutamide after cfDNA collection (n = 39), an AR gene aberration (copy number increase and/or an exon 8 mutation) in pretreatment cfDNA was associated with adverse outcomes, including lower rates of PSA decline ≥ 30% (P = 0.013, χ2) and shorter time to radiographic/clinical progression (P = 0.010, Cox proportional hazards regression). Conclusions: AR gene aberrations in cfDNA are associated with resistance to enzalutamide and abiraterone in mCRPC. Our data illustrate that genomic analysis of cfDNA is a minimally invasive method for interrogating mechanisms of therapeutic resistance in mCRPC. Clin Cancer Res; 21(10); 2315–24. ©2015 AACR.
Of 27 patients sustaining primary patellar dislocations, 20 were treated with immobilization and subsequent physiotherapy (including nine patients who underwent arthroscopy) and seven with immediate surgical stabilization and lateral release. The patients with predisposing factors such as patellofemoral malalignment, abnormal patellar configuration, and a history of prior symptoms of instability were more prone to recurrent dislocation and may benefit from operative intervention. Although the incidence of recurrence among those individuals can be decreased, at least 30% to 50% of all patients having sustained a primary patellar dislocation will continue to have symptoms of instability and/or anterior knee pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.