Summary DNA cytosine methylation is a central epigenetic modification that plays essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of mRNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that they may utilize different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.
Regulation of gene expression by DNA methylation is crucial for defining cellular identities and coordinating organism-wide developmental programs in many organisms. In plants, modulation of DNA methylation in response to environmental conditions represents a potentially robust mechanism to regulate gene expression networks; however, examples of dynamic DNA methylation are largely limited to gene imprinting. Here we report an unexpected role for DNA methylation in regulation of the Arabidopsis thaliana immune system. Profiling the DNA methylomes of plants exposed to bacterial pathogen, avirulent bacteria, or salicylic acid (SA) hormone revealed numerous stress-induced differentially methylated regions, many of which were intimately associated with differentially expressed genes. In response to SA, transposon-associated differentially methylated regions, which were accompanied by up-regulation of 21-nt siRNAs, were often coupled to transcriptional changes of the transposon and/or the proximal gene. Thus, dynamic DNA methylation changes within repetitive sequences or transposons can regulate neighboring genes in response to SA stress.
Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The transcription factor DAF-16/FOXO is central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference (RNAi) revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally colocalize at DAF-16/FOXO target promoters. We show that specifically for gene-activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, in order to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role of SWI/SNF for DAF-16/FOXO-mediated processes, i.e. dauer formation, stress resistance, and the promotion of longevity. Thus we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.