A high-resolution map of human phosphorylation networks was constructed by integrating experimentally determined kinase-substrate relationships with other resources, such as in vivo phosphorylation sites.
The current complement of fluorescent proteins (FPs) contains color variants whose emission spectra span most of the visible spectrum, providing researchers with a versatile toolset of fluorescent probes for live cell imaging applications. FP family members generate their chromophores autocatalytically through a series of posttranslational modifications. The fluorescence characteristics of GFP-family members are influenced in important ways by the local microenvironment surrounding the chromophore. In this tutorial review, we first examine the molecular factors that influence the photophysical properties of FP family members and then briefly discuss some of the ways in which these fascinating proteins have been applied to the field of live cell imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.