The tricarboxylic acid (TCA) cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH2) that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and α-ketoglutarate (KG) is a key participant in the detoxification of reactive oxygen species (ROS). Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH) and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of α-ketoglutarate dehydrogenase (KGDH), NAD-dependent isocitrate dehydrogenase (NAD-ICDH), and succinate dehydrogenase (SDH) were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing.
Although aluminum is known to be toxic to most organisms, its precise biochemical interactions are not fully understood. In the present study, we demonstrate that aluminum promotes the inhibition of aconitase (Acn) activity via the perturbation of the Fe-S cluster in Pseudomonas fluorescens. Despite the significant decrease in citrate isomerization activity, cellular survival is assured by the overexpression of isocitrate lyase and isocitrate dehydrogenase (IDH)-NADP ؉ . 13 C NMR spectroscopic studies, Blue Native PAGE, and Western blot analyses indicated that although the decrease in Acn activity is concomitant with the increase of aluminum in the culture, the amount of Acn expressed is not sensitive to the concentration of the trivalent metal. A 6-fold decrease in Acn activity and no discernable change in protein content in aluminum-stressed cultures were observed. The addition of Fe(NH 4 ) 2 (SO 4 ) 2 in a reducing environment led to a significant recovery in Acn activity. This enzymatic activity reverted to normal levels when aluminum-stressed cells were transferred to either a control or an iron-supplemented medium. The overexpression of the two isocitrate-metabolizing enzymes isocitrate lyase and IDH-NADP ؉ appears to mitigate the deficit in Acn activity. The levels of these enzymes are dependent on the aluminum content of the culture and appear to be under transcriptional control. Hence, the regulation of the enzymes involved in the homeostasis of isocitrate constitutes a pivotal component of the global metabolic strategy that ensures the survival of this organism in an aluminum citrate environment.Metabolism is the foundation of all living organisms, and any biological function is the manifestation of the global cellular metabolism. Hence, any cellular behavior is a direct or indirect product of its metabolism. The enzymes/metabolites participating in metabolism provide a precise snapshot of a cellular phenotype (1, 2). As part of our study on molecular adaptation, we have uncovered an interesting model system that allows deciphering the metabolic reconfiguration evoked by metal stress. The metal toxicant was supplied to the microbe Pseudomonas fluorescens, complexed to citrate, the only carbon source. The role of oxalate and phosphatidylethanolamine in the immobilization of aluminum has been demonstrated recently (3, 4). It appears that the cellular metabolism is reconfigured with the aim of providing the metabolic precursors that allow for the survival of the organism in an aluminum environment. Hence, an aluminum-adapted phenotype with an entirely different set of metabolic pathways than in the wild type is promoted.Citrate, the sole carbon source utilized in this system, is known to be cleaved in various organisms, primarily by the enzymes citrate-lyase (CL), 1 ATP-citrate-lyase (ATP-CL), and Acn. Whereas CL mediates the cleavage of citrate to acetate and oxaloacetate, ATP-CL catalyzes the degradation of tricarboxylic acid into acetyl-CoA and oxaloacetate (5, 6). The latter is also referred to as a l...
Aluminum (Al), a known environmental toxicant, has been linked to a variety of pathological conditions such as dialysis dementia, osteomalacia, Alzheimer's disease, and Parkinson's disease. However, its precise role in the pathogenesis of these disorders is not fully understood. Using hepatocytes as a model system, we have probed the impact of this trivalent metal on the aerobic energy-generating machinery. Here we show that Al-exposed hepatocytes were characterized by lipid and protein oxidation and a dysfunctional tricarboxylic acid (TCA) cycle. BN-PAGE, SDS-PAGE, and Western blot analyses revealed a marked decrease in activity and expression of succinate dehydrogenase (SDH), alpha-ketoglutarate dehydrogenase (KGDH), isocitrate dehydrogenase-NAD+ (IDH), fumarase (FUM), aconitase (ACN), and cytochrome c oxidase (Cyt C Ox). 13C-NMR and HPLC studies further confirmed the disparate metabolism operative in control and Al-stressed cells and provided evidence for the accumulation of succinate in the latter cultures. In conclusion, these results suggest that Al toxicity promotes a dysfunctional TCA cycle and impedes ATP production, events that may contribute to various Al-induced abnormalities.
Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions.
Gallium (Ga), an iron (Fe) mimetic promoted an oxidative environment and elicited an antioxidative response in Pseudomonas fluorescens. Ga-stressed P. fluorescens was characterized by higher amounts of oxidized lipids and proteins compared to control cells. The oxidative environment provoked by Ga was nullified by increased synthesis of NADPH. The activity and expression glucose 6-phosphate dehydrogenase (G6PDH) and isocitrate dehydrogenase-NADP (ICDH) were stimulated in Ga-cultures. The induction of isoenzymes of these dehydrogenases was also evident in the Ga-stressed cells. Although superoxide dismutase (SOD) activity was significantly enhanced in Ga-stressed cultures, catalase activity experienced a marked diminution. Fe metabolism appeared to be severely impeded by Ga toxicity. This is the first demonstration of the oxidative stress evoked by Ga to be neutralized by a reductive environment generated via the overexpression of NADPH-producing enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.