G-quadruplex topologies of telomeric repeat sequences from vertebrates were investigated in the presence of molecular crowding (MC) mimetics, namely polyethylene glycol 200 (PEG), Ficoll 70 as well as Xenopus laevis egg extract by CD and NMR spectroscopy and native PAGE. Here, we show that the conformational behavior of the telomeric repeats in X. laevis egg extract or in Ficoll is notably different from that observed in the presence of PEG. While the behavior of the telomeric repeat in X. laevis egg extract or in Ficoll resembles results obtained under dilute conditions, PEG promotes the formation of high-order parallel topologies. Our data suggest that PEG should not be used as a MC mimetic.
Electron paramagnetic resonance (EPR) spectroscopy is a powerful and widely used technique for studying structure and dynamics of biomolecules under bio-orthogonal conditions. In-cell EPR is an emerging area in this field; however, it is hampered by the reducing environment present in cells, which reduces most nitroxide spin labels to their corresponding diamagnetic N-hydroxyl derivatives. To determine which radicals are best suited for in-cell EPR studies, we systematically studied the effects of substitution on radical stability using five different classes of radicals, specifically piperidine-, imidazolidine-, pyrrolidine-, and isoindoline-based nitroxides as well as the Finland trityl radical. Thermodynamic parameters of nitroxide reduction were determined by cyclic voltammetry; the rate of reduction in the presence of ascorbate, cellular extracts, and after injection into oocytes was measured by continuous-wave EPR spectroscopy. Our study revealed that tetraethyl-substituted nitroxides are good candidates for in-cell EPR studies, in particular pyrrolidine derivatives, which are slightly more stable than the trityl radical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.