Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests.
For the first time, basic technical and economic studies for landfill mining are being carried out in Austria on the basis of a pilot project. An important goal of these studies is the collection of elementary data as the basis for an integrated ecological and economic assessment of landfill mining projects with regard to their feasibility. For this purpose, economic, ecological, technical, organizational, as well as political and legal influencing factors are identified and extensively studied in the article. An important aspect is the mutual influence of the factors on each other, as this can significantly affect the development of an integrated assessment system. In addition to the influencing factors, the definition of the spatial and temporal system boundaries is crucial for further investigations. Among others, the quality and quantity of recovered waste materials, temporal fluctuations or developments in prices of secondary raw material and fuels attainable in the markets, and time and duration of dumping, play a crucial role. Based on the investigations, the spatial system boundary is defined in as much as all the necessary process steps, from landfill mining, preparing and sorting to providing a marketable material/product by the landfill operator, are taken into account. No general accepted definition can be made for the temporal system boundary because the different time-related influencing factors necessitate an individual project-specific determination and adaptation to the facts of the on-site landfill mining project.
Basic technical and economic examinations of Austrian mass waste landfills, concerning the recovery of secondary raw materials, have been carried out by the 'LAMIS - Landfill Mining Austria' pilot project for the first time in Austria. A main focus of the research - the subject of this article - was the first devotion of a pilot landfill to an integrated ecological and economic assessment so that its feasibility could be verified before a landfill mining project commenced. A Styrian mass waste landfill had been chosen for this purpose that had been put into operation in 1979 and received mechanically-biologically pre-treated municipal waste till 2012. The whole assessment procedure was divided into preliminary and main assessment phases to evaluate the general suitability of a landfill mining project with little financial and human resource expense. A portfolio chart, based on a questionnaire, was created for the preliminary assessment that, as a result, has provided a recommendation for subsequent investigation - the main assessment phase. In this case, specific economic criteria were assessed by net present value calculation, while ecological or socio-economic criteria were rated by utility analysis, transferring the result into a utility-net present value chart. In the case of the examined pilot landfill, assessing the landfill mining project produced a higher utility but a lower net present value than a landfill leaving-in for aftercare. Since no clearly preferable scenario could be identified this way, a cost-revenue analysis was carried out in addition that determined a dimensionless ratio: the 'utility - net present value quotient' of both scenarios. Comparing this quotient showed unmistakably that in the overall assessment, 'leaving the landfill in aftercare' was preferable to a 'landfill mining project' in that specific case.
For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method.
Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.