Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods.
Diffusion tensor magnetic resonance imaging (DT-MRI) is unique in providing information about both the structural integrity and the orientation of white matter fibers in vivo and, through "tractography", revealing the trajectories of white matter tracts. DT-MRI is therefore a promising technique for detecting differences in white matter architecture between different subject populations. However, while studies involving analyses of group averages of scalar quantities derived from DT-MRI data have been performed, as yet there have been no similar studies involving the whole tensor. Here we present the first step towards realizing such a study, i.e., the spatial normalization of whole tensor data sets. The approach is illustrated by spatial normalization of 10 DT-MRI data sets to a standard anatomical template. Both qualitative and quantitative approaches are described for assessing the results of spatial normalization. Techniques are then described for combining the spatially normalized data sets according to three definitions of average, i.e., the mean, median, and mode of a distribution of tensors. The current absence of, and hence need for, appropriate statistical tests for comparison of results derived from group-averaged DT-MRI data sets is then discussed. Finally, the feasibility of performing tractography on the group-averaged DT-MRI data set is investigated and the possibility and implications of generating a generic map of brain connectivity from a group of subjects is considered. © 2002 Elsevier Science (USA)
Schizophrenia is associated with altered white matter integrity in the tracts connecting the frontal cortex with the temporal and parietal cortices and with the contralateral frontal and temporal lobes. The severity of these changes may vary with the pattern of symptoms associated with the disorder.
This study evaluates the effects of urban land use on stream channels and riparian ground-water levels along low-order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19-3.46 km 2 ) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8-36.7%). Stream stage and ground-water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006-June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground-water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground-water tables declined. In urban floodplains (>15% TIA), the median ground-water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of ''riparian hydrologic drought'' in these settings.(KEY TERMS: urbanization; surface water ⁄ ground-water interactions; riparian zone; floodplain; channel incision; rivers ⁄ streams.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.