Very small ZnS and CdS crystallites are made and stabilized in aqueous and methanolic media without organic surfactants. Low temperature (−77 °C) synthesis in methanol produces the smallest crystallites, ≈30 Å diameter cubic CdS and <20 Å diameter cubic ZnS. The crystallites are characterized by transmission electron microscopy and in situ optical spectroscopy (λ≳200 nm). The crystallites are too small to exhibit bulk band gaps in their optical spectra. In the band gap region, the small crystallites show a higher energy absorption threshold with a resolved spectral feature (quantum size exciton peak), not present in the spectra of larger crystals. The far ultraviolet spectra are unaffected by size at present resolution. These results can be understood in terms of the crystallite molecular orbitals, and an elementary confined electron and hole model.
Articles you may be interested inElectron ground state energy level determination of ZnSe self-organized quantum dots embedded in ZnS Metal selenide clusters have been made and characterized, using the arrested precipitation colloidal technique. A comparison of sulfide and selenide spectra enables observation of the effect of changes in the highest occupied molecular orbitals upon cluster electronic properties. The first and second excited electronic states are both observed as a function of size in ZnSe clusters. The systematic dependence of the spectra lead to assignment of the higher state to a IS-type hole based upon the split-off valence band. It is shown that the energy spectrum of discrete hole states is controlled by the spin-orbit energy and the isotropic hole mass in small, highly symmetrical clusters. This result contrasts with the heavy hole and light hole states observed for planar confinement. In ~ 20 A diameter ZnS clusters, there is a strong vibronic temperature dependence in the excited state spectra, while in clusters of smaller gap materials such vibronic effects are very minor. We conjecture that lifetime broadening is severe in clusters of small gap materials.
Tiny single PbS crystals of ∼25 Å diameter are synthesized and studied optically in low-temperature colloidal solutions. Electron microscopic examination shows a simple cubic rock salt structure with a lattice constant unchanged, within experimental error, from the bulk value. These crystallites lack the near infrared electronic absorption characteristic of bulk PbS. The small crystallite absorbance in the visible rises more steeply than does the bulk absorbance. These results reflect electron and hole localization if one considers the variation in effective mass across the band structure. A simple discussion of localization anywhere in the Brillouin zone is given. For the first time, crystallite syntheses are carried out in solvent mixtures that form transparent glasses upon cooling. The PbS spectra are independent of temperature (at current experimental resolution) down to 130 K, in contrast to earlier results for quantum size exciton peaks in ∼20 Å ZnS crystallites. Previously published observations of size dependence in the excited state electronic properties of AgI and AgBr are explained as consequences of electron and hole localization in the small crystallites. AgBr appears to be the first indirect gap semiconductor to be examined in the regime where bulk properties are not fully formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.