A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk’s ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides.DOI: http://dx.doi.org/10.7554/eLife.21598.001
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1–3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
Although single-molecule experiments have provided mechanistic insight for several molecular motors, these approaches have proved difficult for membrane bound molecular motors like the F o F 1 -ATP synthase, in which proton transport across a membrane is used to synthesize ATP. Resolution of smaller steps in F o has been particularly hampered by signal-to-noise and time resolution. Here, we show the presence of a transient dwell between F o subunits a and c by improving the time resolution to 10 ls at unprecedented S/N, and by using Escherichia coli F o F 1 embedded in lipid bilayer nanodiscs. The transient dwell interaction requires 163 ls to form and 175 ls to dissociate, is independent of proton transport residues aR210 and cD61, and behaves as a leash that allows rotary motion of the c-ring to a limit of B361 while engaged. This leash behaviour satisfies a requirement of a Brownian ratchet mechanism for the F o motor where c-ring rotational diffusion is limited to 361.
F 1 -ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120°power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35°from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85°to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85°of rotation, consistent with a transition from F 1 structures 2HLD1 and 1H8E (Protein Data Bank).
His-tagged cysteine-less F1Fo ATP synthase from Escherichia coli was purified using Ni-NTA affinity chromatography. During the purification procedure the loss of total ATPase activity did not exceed 50%, and the extent of purification was about 80-fold. The purified enzyme was essentially free of other proteins, was highly active in ATP hydrolysis (75 units/mg at pH 8 and 37 degrees C), and was sensitive to N,N'-dicyclohexylcarbodiimide (70%). Incorporation of F1Fo into soybean liposomes yielded well-coupled and highly active proteoliposomes. The entire procedure, from the disruption of cells by French press to the preparation of proteoliposomes, took only about 8 h. Some improvements in procedures for the estimation of rates of both ATP hydrolysis and ATP-dependent 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.