We report the first observation of discrete Talbot revivals in one-dimensional waveguide arrays. Unlike continuous systems where the Talbot self-imaging effect always occurs irrespective of the pattern period, in discrete configurations this process is only possible for a specific set of periodicities. Recurrence of different input periodic patterns is observed in good agreement with theory.
Discrete solitons with two frequency components mutually locked by a quadratic nonlinearity have been observed for the first time. Optical experiments have been performed in arrays of coupled channel waveguides with tunable cascaded quadratic nonlinearity. The tunability was the prerequisite that soliton species with different topology could be identified in the same array. Moreover, soliton stability has been experimentally probed. Good agreement with theoretical predictions was found.
We report the first observation of enhanced third-order nonlinear effects in AlGaAs nanowires. AlGaAs nanowaveguides with widths varying from 100 to 600nm were fabricated and characterized. Nonlinear phase shifts of approximately pi were experimentally observed at 1.55mum with peak powers of 30-40W in 600mum long, 550nm wide guides.
We report the first observation of discrete quadratic surface solitons in self-focusing and defocusing periodically poled lithium niobate waveguide arrays. By operating on either side of the phase-matching condition and using the cascading nonlinearity, both in-phase and staggered discrete surface solitons were observed. This represents the first experimental demonstration of staggered/gap surface solitons at the interface of a semi-infinite nonlinear lattice. The experimental results were found to be in good agreement with theory.
The recent theoretical predictions and experimental observations of discrete surface solitons propagating along the interface between a one- or two-dimensional continuous medium and a one- or two-dimensional waveguide array are reviewed. These discrete solitons were found in second order (periodically poled lithium niobate) and third order nonlinear media, including AlGaAs, photorefractive media and glass, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.