Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
The intrachromosomal distribution of non-telomeric sites of the (TTAGGG)n telomeric repeat was determined for 100 vertebrate species. The most common non-telomeric location of this sequence was in the pericentric regions of chromosomes. A variety of species showed relatively large amounts of this sequence present within regions of constitutive heterochromatin. We discuss possible relationships between the non-telomeric distribution of the (TTAGGG)n sequence and the process of karyotype evolution, during which these sites may provide potential new telomeres.
Critical issues in the use of diallel analysis are reviewed. From a statistical point of view the critical issue concerns the choice of a model with fixed or random genotypic effects. From a genetical point of view, two assumptions are critical in attempts to interpret the resuits of diallel analyses. The assumption concerning the independent distribution of genees in the parents is most critical to proper interpretation and seems to be least acceptable in actual practice. The second assumption, that there is no epistasis, may frequently be incorrect. Epistasis affects estimates of general and specific combining ability mean squares, variances, and effects in an unpredictable manner. As an alternative to genetic interpretation, the statistical description provided by dialiel analysis can be used to help answer questions concerning the importance of specific combining ability and the predictability of hybrid performance using general combining ability or parental performance.
We define a genetic species as a group of genetically compatible interbreeding natural populations that is genetically isolated from other such groups. This focus on genetic isolation rather than reproductive isolation distinguishes the Genetic Species Concept from the Biological Species Concept. Recognition of species that are genetically isolated (but not reproductively isolated) results in an enhanced understanding of biodiversity and the nature of speciation as well as speciation-based issues and evolution of mammals. We review criteria and methods for recognizing species of mammals and explore a theoretical scenario, the Bateson-Dobzhansky-Muller (BDM) model, for understanding and predicting genetic diversity and speciation in mammals. If the BDM model is operating in mammals, then genetically defined phylogroups would be predicted to occur within species defined by morphology, and phylogroups experiencing stabilizing selection will evolve genetic isolation without concomitant morphological diversification. Such species will be undetectable using classical skin and skull morphology (Morphological Species Concept). Using cytochrome-b data from sister species of mammals recognized by classical morphological studies, we estimated the number of phylogroups that exist within mammalian species and hypothesize that there will be >2,000 currently unrecognized species of mammals. Such an underestimation significantly affects conclusions on the nature of speciation in mammals, barriers associated with evolution of genetic isolation, estimates of biodiversity, design of conservation initiatives, zoonoses, and so on. A paradigm shift relative to this and other speciation-based issues will be needed. Data that will be effective in detecting these "morphologically cryptic genetic species" are genetic, especially DNA-sequence data. Application of the Genetic Species Concept uses genetic data from mitochondrial and nuclear genomes to identify species and species boundaries, the extent to which the integrity of the gene pool is protected, nature of hybridization (if present), and introgression. Genetic data are unique in understanding species because the use of genetic data 1) can quantify genetic divergence from different aspects of the genome (mitochondrial and nuclear genes, protein coding genes, regulatory genes, mobile DNA, microsatellites, chromosomal rearrangements, heterochromatin, etc.); 2) can provide divergence values that increase with time, providing an estimate of time since divergence; 3) can provide a population genetics perspective; 4) is less subject to convergence and parallelism relative to other sets of characters; 5) can identify monophyly, sister taxa, and presence or absence of introgression; and 6) can accurately identify hybrid individuals (kinship and source of hybrid individuals, F(1)s, backcrosses, direction of hybridization, and in concert with other data identify which hybrids are sterile or fertile). The proposed definition of the Genetic Species Concept is more compatible with a description o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.