Models of genesis for the Navan orebody are of two distinct types. An early hypothesis that mesothermal (though nonmagmatic) deposition of ore began when a supernatant seawater brine still had access to the host sediments (during the early to mid-Mississippian), has been challenged by recent suggestions favoring a later (mid-to late Mississippian to Pennsylvanian) mineralization derived from cooler fluids traversing either the Mississippian/Pennsylvanian basin or the underlying basement from the south. These models, characterized here as Irish-type and Mississippi Valley-type respectively, are interrogated as to their particular predictions with regard to metal distributions and sulfur isotope patterns associated with various fault geometries. The basal 5 lens of the Navan Zn + Pb deposit contains ~70 percent of the known tonnage of the ~90 Mt orebody and, thus, is the focus of this examination. Lead distribution patterns suggest that migration of metalbearing fluids was principally directed up early to mid-Mississippian, near vertical north-northeast, northeast, and east-northeast minor normal faults. These faults predate or are coeval with the major extensional, partly listric, east-northeast faults which now control the general disposition of the deposit. Only where these major east-northeast faults cross putative deep-seated northeast (Caledonoid) and northwest structures are they associated with lead enrichments. A systematic δ 34 S survey in the 5 lens across five minor north-northeast-through to east-northeast-trending faults associated with distinct lead enrichments, and one east-northeast-trending, partly listric, major extensional fault adjacent to that trend, revealed positive δ 34 S values (1-18‰) for galena, sphalerite, and marcasite sampled within 3 m of all the faults on the profile. Sulfides with positive δ 34 S values associated with the deep-seated, metal-bearing fluid generating the Navan deposit have been highlighted by previous workers (Anderson et al., 1998). The evidence reported here strongly suggests that the metal-bearing fluids rose through all the fractures. Conversely, negative δ 34 S values (-1 to-26‰) were returned in galena and sphalerite sampled 3 m or more from these faults. These negative values indicate that locally derived bacteriogenic sulfide, reduced from seawater sulfate, dominated away from these faults. Pyrite δ 34 S values suggest a background level of-29 ± 3.0 per mil across the profile. However, pyrite δ 34 S values as low as-34 ± 2.7 per mil were recorded in one sample collected from within 1 m of a fault. Thus, fluids containing highly fractionated, bacteriogenic sulfide also gravitated into these faults on at least one occasion. There is also evidence suggesting that the metal-bearing solutions periodically displaced the locally derived bacteriogenic sulfide-bearing fluid in and near the faults. Mineral sulfide petrography is used to contextualize the sampling and to give a qualitative indication of the degree of chemical disequilibrium of the system. Mineral textu...
Irish-type deposits comprise carbonate-hosted sphalerite- and galena-rich lenses concentrated near normal faults. We present new data from the Tara Deep resource and overlying mineralization, at Navan, and the Island Pod deposit and associated Main zone orebodies, at Lisheen. Tara Deep mineralization predominantly replaces Tournasian micrites and subordinate Visean sedimentary breccias. The mineralization is mainly composed of sphalerite, galena, marcasite and pyrite. A range of Cu- and Sb-bearing minerals occur as minor phases. At Tara Deep, paragenetically early sulfides exhibit negative δ34S values, with later phases displaying positive δ34S values, indicating both bacterial sulfate reduction (BSR) and hydrothermal sulfur sources, respectively. However, maximum δ34S values are heavier (25‰) than in the Main Navan orebody (17‰). These mineralogical and isotopic features suggest that Tara Deep represents near-feeder mineralization relative to the Navan Main orebody. The subeconomic mineralization hosted in the overlying Thin Bedded Unit (TBU) comprises sphalerite replacing framboidal pyrite, both exhibiting negative δ34S values (−37.4 to −8.3‰). These features indicate a BSR source of sulfur for TBU mineralization, which may represent seafloor exhalation of mineralizing fluids that formed the Tara Deep orebody. The Island Pod orebody, at Lisheen, shows a mineralogical paragenetic sequence and δ34S values broadly similar to other Lisheen orebodies. However, the lack of minor Cu, Ni, and Sb minerals suggests a setting more distal to hydrothermal metal feeder zones than the other Lisheen orebodies. Pb isotope data indicate a very homogeneous Lower Palaeozoic Pb source for all Navan orebodies. Lower Palaeozoic metal sources are also inferred for Lisheen, but with variations both within and between orebodies. Carbon and oxygen isotopic variations at Navan and Lisheen appear to result from fluid-carbonate rock buffering. The emerging spectrum of mineralogical and isotopic variations define proximal to distal characteristics of Irish-type systems and will assist in developing geochemical vectoring tools for exploration.
In the first decade of the 21st century, surface exploration drilling around the Boliden Tara mine at Navan, Ireland, aimed at ~1-km-deep targets, was becoming ineffective. During 2010, the extensive geologic knowledge of the existing Navan orebody was leveraged in an Experts Meeting to promote near-mine discovery. Two ideas, of many, were of relevance to this paper: (1) undiscovered mineralized fault-related zones were predicted south of the orebody, and (2) seismic surveys could locate subsurface faults. By late 2012, seven 2D seismic lines (totaling 101 km) had been acquired, processed, and initially interpreted. Pre-stack time migration images were used for interpretation, augmented by diamond drill core data where available. The seismic imaging proved a “game changer” in terms of subsurface visualization and a priority target was identified 2 km south of the mine on the footwall crest of a large south-dipping basin-margin fault. The first hole intersected 34 m of mineralized rock with 14% Zn + Pb, but at greater depth than anticipated. Follow-up drilling was initially successful but proved to be challenging. The first hole intersected a deep structurally complex section of the newly discovered zone that required more drilling to establish its location and attitude. Further drilling, utilizing extensive navigational deflection technology, outlined a mineralized zone similar in nature to the Navan 5 Lens at depths of 1 to 2 km. Inferred resources through 2016 were estimated at 10.2 Mt grading 8.5% Zn and 1.8% Pb. Underground exploration development of this zone commenced in April 2017, and will allow accurate delineation of this significant discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.