The Industry responsible for the discovery and development of crop protection compounds has undergone dramatic changes and increasing consolidation since the initial innovations in synthetic organic fungicides, herbicides and insecticides in the late 1940s and early 1950s. Likewise, there have been striking changes in the rate of introduction of new crop protection compounds over the past 70 years. While numerous studies over the past five decades have signaled the ongoing decline in the numbers of new active ingredients (AIs), a detailed analysis of the trends in the rate of introduction of crop protection compounds shows a more complex pattern in the overall output of new AIs. The recent (post‐2000) decline in the numbers of new herbicides is the primary source of the perceived decline in overall numbers. When herbicides are excluded, the output of new fungicides and insecticides has been relatively constant, especially for the past 20 years. A notable observation is that innovation, as measured by the number of compounds representing a new chemical class (First‐in‐Class) has been relatively constant for the past 70 years, and most recently has been driven by the appearance of new fungicides and insecticides. Thus, the discovery and development of new AIs for crop protection and public health continues, in spite of the many challenges and changes to the Industry. © 2021 Society of Chemical Industry
Natural products (NPs) have long been an important source of, and inspiration for, developing novel compounds to control weeds, pathogens and insect pests. In this review, we use a dataset of 800 historic, current and emerging crop protection compounds to explore the influence of NPs on the introduction of new crop protection compounds (fungicides, herbicides, insecticides) as a function of time. NPs, their semisynthetic derivatives (NPDs) and compounds inspired by NPs (NP mimics, NPMs) account for 17% of all crop protection compounds. NPs, NPDs, and NPMs have been a fairly constant source of new agrochemicals over the past 70 years. NP synthetic equivalents (NPSEs) is a fourth group of NP-related crop protection compounds composed of synthetic compounds which by chance also happen to have an NP model (but are not involved in the discovery). If NPSE compounds are also included, then 50% of all crop protection compounds hypothetically could have had a NP origin. Similar trends also hold true for the impact of NPs on the discovery of new modes of action (MoA) or innovation in crop protection compounds as measured by the number of first-in-class compounds. NPs have had the largest impact on the numbers and global sales (2018 USD) of insecticides compared to fungicides and herbicides. The present analysis highlights NPs as a longstanding and continuing source of new chemistry, new MoAs and innovation in crop protection compound discovery.
The efficient production of the food needed to nourish an expanding global population continues to fuel the demand for new crop protection compounds. This task is made all the more difficult by the need to meet increasingly demanding grower, consumer and regulatory constraints. The discovery and development of new synthetic organic crop protection compounds has been largely the responsibility of the agrochemical industry in Europe, Japan and the USA, with government‐funded academic research often playing a crucial role in the early stages of the invention and testing of novel activity. The way in which this process takes place has undergone a dramatic evolution over the past 75 years. Drastic consolidation and globalization among the research and development (R&D)‐based companies in these regions have characterized these changes. This evolution in the agrochemical industry has, in turn, shaped the rate of introduction and geographic origin of new crop protection compounds. In spite of these changes, the rate of invention of new classes of crop protection compounds has remained relatively constant. During the past 30 years, the forefront of new compound introductions has moved towards Asia, and Japan in particular. Although there are now more agrochemical companies in Japan involved in the discovery and development of new crop protection compounds than in Europe and the USA combined, on a compound‐per‐company basis, US companies currently generate the highest output. However, it is expected that there will continue to be changes in the numbers and origins of new crop protection compounds, with contributions continuing from Europe, Japan and the USA, and increasingly from China. © 2021 Society of Chemical Industry.
Current crop protection chemicals span an array of chemistry classes and modes of action. Typically, within each chemistry class, there are multiple chemically distinct active ingredients competing with each other for market position. In this competition, the first product to market in a new class or mode of action may or may not have an advantage depending upon a number of parameters, including relative efficacy against the target pests, pest resistance, regulatory pressures, synthetic complexity, and marketing effectiveness. The number of companies involved in the discovery of new crop protection compounds has been declining, and patenting strategies have become more sophisticated, making it more challenging to break into an existing area of chemistry. One result is new classes of chemistry tend to be smaller, making first to market more beneficial than in the past. Additionally, the first into a market with a new class of chemistry has the opportunity to set positioning and expectations.
Everyone is affected directly or indirectly by pesticide use and safety. The magnitude and perception of this effect depend on one's individual involvement or vantage point. The researcher seeks discovery and the entrepreneur goes after financial rewards. The general public wants food, health and safety. Pesticide toxicology is a core issue in these relationships. The three goals of toxicology research on pesticides are first to create new knowledge and chemicals, second to evaluate their effectiveness and safety and third to regulate their use. What amounts of pesticides are applied and do we really understand their biology and chemistry? This review addresses the ABCs of pesticide toxicology, their amounts, biology and chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.