Silver nanoparticles (AgNPs) have potent antimicrobial properties at concentrations far below those that cause cytotoxic and genotoxic effects in eukaryotic cells. This property has resulted in the widespread use of AgNPs in consumer products, leading to environmental exposures at sub-lethal levels through ingestion and inhalation. Although the toxicity of AgNPs has been well characterized, effects of environmentally relevant exposures have not been extensively investigated in spite of studies that suggest accumulation of silver in tissues, including brain. To assess the sublethal effects of AgNPs on neural cell function, we used cultured SVZ-NSCs, a model of neurogenesis and neural cells. Throughout life, neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricles proliferate and migrate via the rostral migratory stream to the olfactory bulb. Once there, they complete differentiation into neurons and glia and integrate into existing circuits. This process of neurogenesis is tightly regulated, and is considered a part of healthy brain function. We found that 1.0 μg/mL AgNP exposure in cultured differentiating NSCs induced the formation of f-actin inclusions, indicating a disruption of actin function. These inclusions did not co-localize with AgNPs, and therefore do not represent sequestered nanoparticles. Further, AgNP exposure led to a reduction in neurite extension and branching in live cells, cytoskeleton-mediated processes vital to neurogenesis. We conclude that AgNPs at sublethal concentrations disrupt actin dynamics in SVZ-NSCs, and that an associated disruption in neurogenesis may contribute to documented deficits in brain function following AgNP exposure.
An array of four 87 Rb vector magnetometers are used to detect nuclear quadrupole resonance (NQR) signals in an unshielded environment at 1 MHz. With a baseline of 25 cm, the length of the array, radio-frequency interference mitigation (RFIM) is also demonstrated; a radio-station signal is suppressed by a factor of 20 without degradation to the signal of interest. With these compact sensors, in which the probe beam passes through twice, the fundamental limit to detection sensitivity is found to be photon shot noise. More passes of the probe beam overcome this limitation. With a sensor of similar effective volume, 0.25 cm 3 , but 25 times more passes, the sensitivity is improved by an order of magnitude to 1.7 ± 0.2 fT/ √ Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.