We model 1981-2002 annual default frequencies for a panel of US firms in different rating and age classes from the Standard and Poor's database. The data is decomposed into a systematic and firm-specific risk component, where the systematic component reflects the general economic conditions and default climate. We have to cope with (i) the shared exposure of each age cohort and rating class to the same systematic risk factor;(ii) strongly non-Gaussian features of the individual time series; (iii) possible dynamics of an unobserved common risk factor; (iv) changing default probabilities over the age of the rating, and (v) missing observations. We propose a non-Gaussian multivariate state space model that deals with all of these issues simultaneously. The model is estimated using importance sampling techniques that have been modified to a multivariate setting. We show in a simulation study that such a multivariate approach improves the performance of the importance sampler.
A liquid chromatographic method for determining glyphosate (GLYPH) and its major metabolite aminomethylphosphonic acid (AMPA) in various environmental substrates is described. Ion-exchange column chromatography is coupled with post-column ninhydrin derivatization and absorbance detection at 570 nm. Use of a valve-switching technique allowed quantitation of both analytes in a single chromatographic run and eliminated slow-eluting, coextracted interferences. The method was successfully used to quantitate GLYPH and AMPA in organic and mineral soils, stream sediments, and foliage of 2 hardwood brush species. Mean recovery efficiencies for GLYPH as determined from fortified blank field samples were as follows: bottom sediment 84%, suspended sediment 66%, organic soils 79%, mineral soils 73%, alder leaf litter 81%, salmonberry leaf litter 84%, and artificial deposit collectors 87%. Precision for GLYPH determination was good with less than 14% coefficient of variation on mean recovery for all substrates. Limits of detection were lowest for sediments (0.01 μg/g dry mass) and highest for foliage substrates (0.10 μg/g dry mass). Using this system, 6 samples/person/day were routinely analyzed.
Objectives KiloHertz frequency alternating current waveforms produce conduction block in peripheral nerves. It is not clearly known how the waveform shape affects block outcomes, and if waveform effects are frequency dependent. We determined the effects of waveform shape using two types of electrodes. Materials and methods Acute in-vivo experiments were performed on 12 rats. Bipolar electrodes were used to electrically block motor nerve impulses in the sciatic nerve, as measured using force output from the gastrocnemius muscle. Three blocking waveforms were delivered (sinusoidal, square and triangular) at 6 frequencies (10–60 kHz). Bare platinum electrodes were compared with carbon black coated electrodes. We determined the minimum amplitude that could completely block motor nerve conduction (block threshold), and measured properties of the onset response, which is a transient period of nerve activation at the start of block. In-vivo results were compared with computational modeling conducted using the NEURON simulation environment using a nerve membrane model modified for stimulation in the kilohertz frequency range. Results For the majority of parameters, in-vivo testing and simulations showed similar results: Block thresholds increased linearly with frequency for all three waveforms. Block thresholds were significantly different between waveforms; lowest for the square waveform and highest for triangular waveform. When converted to charge per cycle, square waveforms required the maximum charge per phase, and triangular waveforms the least. Onset parameters were affected by blocking frequency but not by waveform shape. Electrode comparisons were performed only in-vivo. Electrodes with carbon black coatings gave significantly lower block thresholds and reduced onset responses across all blocking frequencies. For 10 and 20 kHz, carbon black coating significantly reduced the charge required for nerve block. Conclusions We conclude that both sinusoidal and square waveforms at frequencies of 20 kHz or higher would be optimal. Future investigation of carbon black or other high charge capacity electrodes may be useful in achieving block with lower BTs and onsets. These findings will be of importance for designing clinical nerve block systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.