Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning. The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels. Enhanced primary production results in an accumulation of particulate organic matter, which encourages microbial activity and the consumption of dissolved oxygen in bottom waters. Dead zones have now been reported from more than 400 systems, affecting a total area of more than 245,000 square kilometers, and are probably a key stressor on marine ecosystems.
No other environmental variable of such ecological importance to estuarine and coastal marine ecosystems around the world has changed so drastically, in such a short period of time, as dissolved oxygen. While hypoxic and anoxic environments have existed through geological time, their occurrence in shallow coastal and estuarine areas appears to be increasing, most likely accelerated by human activities. Several large systems, with historical data, that never reported hypoxia at the turn of the 19th century (e.g., Kattegat, the sea between Sweden and Denmark) now experience severe seasonal hypoxia. Synthesis of literature pertaining to benthic hypoxia and anoxia revealed that the oxygen budgets of many major coastal ecosystems have been adversely affected mainly through the process of eutrophication (the production of excess organic matter). It appears that many ecosystems that are now severely stressed by hypoxia may be near or at a threshold of change or collapse (loss of fisheries, loss of biodiversity, alteration of food webs).
Abstract. Water masses can become undersaturated with oxygen when natural processes alone or in combination with anthropogenic processes produce enough organic carbon that is aerobically decomposed faster than the rate of oxygen reaeration. The dominant natural processes usually involved are photosynthetic carbon production and microbial respiration. The re-supply rate is indirectly related to its isolation from the surface layer. Hypoxic water masses (<2 mg L −1 , or approximately 30% saturation) can form, therefore, under "natural" conditions, and are more likely to occur in marine systems when the water residence time is extended, water exchange and ventilation are minimal, stratification occurs, and where carbon production and export to the bottom layer are relatively high. Hypoxia has occurred through geological time and naturally occurs in oxygen minimum zones, deep basins, eastern boundary upwelling systems, and fjords.Hypoxia development and continuation in many areas of the world's coastal ocean is accelerated by human activities, especially where nutrient loading increased in the Anthropocene. This higher loading set in motion a cascading set of events related to eutrophication. The formation of hypoxic areas has been exacerbated by any combination of interactions that increase primary production and accumulation of organic carbon leading to increased respiratory demand for oxygen below a seasonal or permanent pycnocline. Nutrient loading is likely to increase further as population growth and resource intensification rises, especially with increased Correspondence to: N. N. Rabalais (nrabalais@lumcon.edu) dependency on crops using fertilizers, burning of fossil fuels, urbanization, and waste water generation. It is likely that the occurrence and persistence of hypoxia will be even more widespread and have more impacts than presently observed.Global climate change will further complicate the causative factors in both natural and human-caused hypoxia. The likelihood of strengthened stratification alone, from increased surface water temperature as the global climate warms, is sufficient to worsen hypoxia where it currently exists and facilitate its formation in additional waters. Increased precipitation that increases freshwater discharge and flux of nutrients will result in increased primary production in the receiving waters up to a point. The interplay of increased nutrients and stratification where they occur will aggravate and accelerate hypoxia. Changes in wind fields may expand oxygen minimum zones onto more continental shelf areas. On the other hand, not all regions will experience increased precipitation, some oceanic water temperatures may decrease as currents shift, and frequency and severity of tropical storms may increase and temporarily disrupt hypoxia more often.The consequences of global warming and climate change are effectively uncontrollable at least in the near term. On the other hand, the consequences of eutrophication-induced hypoxia can be reversed if long-term, broad-scale, and per...
Rabalais, N. N., Turner, R. E., Díaz, R. J., and Justić, D. 2009. Global change and eutrophication of coastal waters. – ICES Journal of Marine Science, 66: 1528–1537. The cumulative effects of global change, including climate change, increased population, and more intense industrialization and agribusiness, will likely continue and intensify the course of eutrophication in estuarine and coastal waters. As a result, the symptoms of eutrophication, such as noxious and harmful algal blooms, reduced water quality, loss of habitat and natural resources, and severity of hypoxia (oxygen depletion) and its extent in estuaries and coastal waters will increase. Global climate changes will likely result in higher water temperatures, stronger stratification, and increased inflows of freshwater and nutrients to coastal waters in many areas of the globe. Both past experience and model forecasts suggest that these changes will result in enhanced primary production, higher phytoplankton and macroalgal standing stocks, and more frequent or severe hypoxia. The negative consequences of increased nutrient loading and stratification may be partly, but only temporarily, compensated by stronger or more frequent tropical storm activity in low and mid-latitudes. In anticipation of the negative effects of global change, nutrient loadings to coastal waters need to be reduced now, so that further water quality degradation is prevented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.