Glucose-grown washed cells of streptococci similar to Streptococcus mutans, which contain cell-bound dextransucrase, have been observed to agglutinate upon the addition of high molecular weight dextran. Low molecular weight dextran or unrelated polysaccharides were ineffective. Agglutination also occurred upon addition of sucrose, which can be converted into dextran, but not with other mono-and disaccharides. Other bacteria, including species capable of synthesizing dextrans, were not observed to exhibit this phenomenon. Cells of S. mutans agglutinated upon addition of dextran over a wide pH range, but maximal sensitivity to dextran occurred at pH 8.5. At this pH, such cells can be used for a simple, specific, and exquisitely sensitive qualitative assay for high molecular weight dextran, for addition of 6 ng of dextran with a molecular weight of 2 X 106 (i.e., approximately three molecules per cell) caused detectable agglutination. High concentrations of glucose, levan, and dextran of molecular weight of 2 X 104 inhibited the reaction. Fluorescein-labeled cells of S. mutans were observed to adhere to dextran-containing plaques and dextran-treated teeth, suggesting that this phenomenon may be of importance in the formation of streptococcal dental plaques. The mechanism responsible for dextraninduced agglutination appears to involve the affinity of a receptor site, possibly dextransucrase, on the surface of several cells for common dextran molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.