The need for robust defect detection in NDE applications requires the identification of subtle, low-contrast changes in measurement signals usually in very noisy data. Most algorithms rarely perform at the level of a human inspector and often, as data sets are now routinely 10+ Gigabytes, require laborious manual inspection. We present two automated defect segmentation methods, simple threshold and a binomial hypothesis test, and compare effectiveness of these approaches in noisy data with signal to noise ratios at 1:1. The defectdetection ability of our algorithm will be demonstrated on a 3D CT volume, UT C-scan data, magnetic particle images, and using simulated data generated by XRSIM. The latter is a physics-based forward model useful in demonstrating the effectiveness of data processing approaches in a simulation which includes complex defect geometry and realistic measurement. These large data setsrepresent significant demands on compute resources and easily overwhelm typical PC platforms; however, the emergence of graphics processing units(GPU) processing power provides a means to overcome this bottleneck. Processing large, multi-dimensional datasets requires an optimal GPU implementation which addresses both computational complexity and memory-bandwidth usage. Abstract. The need for robust defect detection in NDE applications requires the identification of subtle, low-contrast changes in measurement signals usually in very noisy data. Most algorithms rarely perform at the level of a human inspector and often, as data sets are now routinely 10+ Gigabytes, require laborious manual inspection. We present two automated defect segmentation methods, simple threshold and a binomial hypothesis test, and compare effectiveness of these approaches in noisy data with signal to noise ratios at 1:1. The defect-detection ability of our algorithm will be demonstrated on a 3D CT volume, UT C-scan data, magnetic particle images, and using simulated data generated by XRSIM. The latter is a physics-based forward model useful in demonstrating the effectiveness of data processing approaches in a simulation which includes complex defect geometry and realistic measurement. These large data sets represent significant demands on compute resources and easily overwhelm typical PC platforms; however, the emergence of graphics processing units(GPU) processing power provides a means to overcome this bottleneck. Processing large, multi-dimensional datasets requires an optimal GPU implementation which addresses both computational complexity and memory-bandwidth usage.
No abstract
Ultrasonic testing (UT) is used to detect internal flaws in materials and to characterize material properties. In many applications, computational simulations are an important part of the inspection-design and analysis processes. Having fast surrogate models for UT simulations is key for enabling efficient inverse analysis and model-assisted probability of detection (MAPOD). In many cases, it is impractical to perform the aforementioned tasks in a timely manner using current simulation models directly. Fast surrogate models can make these processes computationally tractable. This paper presents investigations of using surrogate modeling techniques to create fast approximate models of UT simulator responses. In particular, we propose to integrate data-driven methods (here, kriging interpolation with variable-fidelity models to construct an accurate and fast surrogate model. These techniques are investigated using test cases involving UT simulations of solid components immersed in a water bath during the inspection process. We will apply the full ultrasonic solver and the surrogate model to the detection and characterization of the flaw. The methods will be compared in terms of quality of the responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.