A polarizable ionic interaction potential, constructed from first-principles calculations, is used to examine the structure, vibrational spectra, and transport properties of molten mixtures of LiF and BeF2 across a range of compositions. The simulations reproduce the experimentally measured vibrational frequencies of the fluoroberyllate (BeF4(2-)) ions, which form in the melt, as well as conductivity and viscosity values across the composition range. Examination of the structures of the melts reveals the emergence of a slowly relaxing network of BeF4 units as the concentration of BeF2 is increased. The relationship between the appearance of the network and the composition dependence of the transport properties is explored.
The construction of an interaction potential for BeF2 and its mixtures with LiF on a purely first-principles basis is described. The quality of the representation of the forces on the ions obtained from ab initio electronic structure calculations by various potentials, which include many-body interaction effects to different extents, are considered. The predictions of the properties of pure BeF2 obtained in simulations with a polarizable potential are then compared with experimental values. In the subsequent paper, a more extensive comparison of the predicted properties of LiF-BeF2 mixtures with experiment is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.