Over the past four decades, the characterization of memory loss associated with Alzheimer's disease (AD) has been extensively debated. Recent iterations have focused on disordered encoding versus rapid forgetting. To address this issue, we used a behavioral pattern separation task to assess the ability of the hippocampus to create and maintain distinct and orthogonalized visual memory representations in patients with amnestic mild cognitive impairment (aMCI) and mild AD. We specifically used a lag-based continuous recognition paradigm to determine whether patients with aMCI and mild AD fail to encode visual memory representations or whether these patients properly encode representations that are rapidly forgotten. Consistent with the rapid forgetting hypothesis of AD, we found that patients with aMCI demonstrated decreasing pattern separation rates as the lag of interfering objects increased. In contrast, patients with AD demonstrated consistently poor pattern separation rates across three increasingly longer lags. We propose a continuum that reflects underlying hippocampal neuropathology whereby patients with aMCI are able to properly encode information into memory but rapidly lose these memory representations, and patients with AD, who have extensive hippocampal and parahippocampal damage, cannot properly encode information in distinct, orthogonal representations. Our results also revealed that whereas patients with aMCI demonstrated similar behavioral pattern completion rates to healthy older adults, patients with AD showed lower pattern completion rates when we corrected for response bias. Finally, these behavioral pattern separation and pattern completion results are discussed in terms of the dual process model of recognition memory.
A growing body of literature has investigated changes in eye movements as a result of Alzheimer’s disease (AD). When compared to healthy, age-matched controls, patients display a number of remarkable alterations to oculomotor function and viewing behavior. In this article, we review AD-related changes to fundamental eye movements, such as saccades and smooth pursuit motion, in addition to changes to eye movement patterns during more complex tasks like visual search and scene exploration. We discuss the cognitive mechanisms that underlie these changes and consider the clinical significance of eye movement behavior, with a focus on eye movements in mild cognitive impairment. We conclude with directions for future research.
The hippocampus creates distinct episodes from highly similar events through a process called pattern separation and can retrieve memories from partial or degraded cues through a process called pattern completion. These processes have been studied in humans using tasks where participants must distinguish studied items from perceptually similar lure items. False alarms to lures (incorrectly reporting a perceptually similar item as previously studied) are thought to reflect pattern completion, a retrieval-based process. However, false alarms to lures could also result from insufficient encoding of studied items, leading to impoverished memory of item details and a failure to correctly reject lures. The current study investigated the source of lure false alarms by comparing eye movements during the initial presentation of items to eye movements made during the later presentation of item repetitions and similar lures in order to assess mnemonic processing at encoding and retrieval, respectively. Relative to other response types, lure false alarms were associated with fewer fixations to the initially studied items, suggesting that false alarms result from impoverished encoding. Additionally, lure correct rejections and lure false alarms garnered more fixations than hits, denoting additional retrieval-related processing. The results suggest that measures of pattern separation and completion in behavioral paradigms are not process-pure.
Events that overlap with previous experience may trigger reactivation of existing memories. However, such reactivation may have different representational consequences within the hippocampal circuit. Computational theories of hippocampal function suggest that dentate gyrus and CA 2,3 (DG/CA 2,3 ) are biased to differentiate highly similar memories, whereas CA 1 may integrate related events by representing them with overlapping neural codes. Here, we tested whether the formation of differentiated or integrated representations in hippocampal subfields depends on the strength of memory reactivation during learning. Human participants of both sexes learned associations (AB pairs, either face-shape or scene-shape), and then underwent fMRI scanning while they encoded overlapping associations (BC shape-object pairs). Both before and after learning, participants were also scanned while viewing indirectly related elements of the overlapping memories (A and C images) in isolation. We used multivariate pattern analyses to measure reactivation of initial pair memories (A items) during overlapping pair (BC) learning, as well as learning-related representational change for indirectly related memory elements in hippocampal subfields. When prior memories were strongly reactivated during overlapping pair encoding, DG/CA 2,3 and subiculum representations for indirectly related images (A and C) became less similar, consistent with pattern differentiation. Simultaneously, memory reactivation during new learning promoted integration in CA 1 , where representations for indirectly related memory elements became more similar after learning. Furthermore, memory reactivation and subiculum representation predicted faster and more accurate inference (AC) decisions. These data show that reactivation of related memories during new learning leads to dissociable coding strategies in hippocampal subfields, in line with computational theories.
Remapping refers to a decorrelation of hippocampal representations of similar spatial environments. While it has been speculated that remapping may contribute to the resolution of episodic memory interference in humans, direct evidence is surprisingly limited. We tested this idea using high-resolution, pattern-based fMRI analyses. Here we show that activity patterns in human CA3/dentate gyrus exhibit an abrupt, temporally-specific decorrelation of highly similar memory representations that is precisely coupled with behavioral expressions of successful learning. The magnitude of this learning-related decorrelation was predicted by the amount of pattern overlap during initial stages of learning, with greater initial overlap leading to stronger decorrelation. Finally, we show that remapped activity patterns carry relatively more information about learned episodic associations compared to competing associations, further validating the learning-related significance of remapping. Collectively, these findings establish a critical link between hippocampal remapping and episodic memory interference and provide insight into why remapping occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.