This paper presents a new methodology of coupled hydraulic fracturing, geomechanical and reservoir modeling, and an example of integrated analysis of a tight gas well. The new modeling technology and its advantages in field application are demonstrated on a case study of a "science well" in a tight gas Wyoming field. A detailed model of the well included its entire fracturing and production history, and was constrained by a large amount of field measurements. The model was successfully history matched to all of this data using a common reservoir description. This novel approach thus results in much higher level of confidence compared to using uncoupled models with different assumptions. The history matching process provided insight in the mechanics of fracturing and flow in this field, and the importance of geomechanical effects. Some of the most important findings are that the formation permeability is highly stress sensitive and increases dramatically during frac injection, fracture length and conductivity is highly variable during flowbacks, and geomechanical effects on conductivity are still evident after several months of production. The calibrated model was then used to assess the gains in productivity possible from improved technology of fracturing, resulting in larger conductivity and length of fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.