Next-generation sequencing technologies have revolutionized the field of paleogenomics, allowing the reconstruction of complete ancient genomes and their comparison with modern references. However, this requires the processing of vast amounts of data and involves a large number of steps that use a variety of computational tools. Here we present PALEOMIX (http://geogenetics.ku.dk/publications/paleomix), a flexible and user-friendly pipeline applicable to both modern and ancient genomes, which largely automates the in silico analyses behind whole-genome resequencing. Starting with next-generation sequencing reads, PALEOMIX carries out adapter removal, mapping against reference genomes, PCR duplicate removal, characterization of and compensation for postmortem damage, SNP calling and maximum-likelihood phylogenomic inference, and it profiles the metagenomic contents of the samples. As such, PALEOMIX allows for a series of potential applications in paleogenomics, comparative genomics and metagenomics. Applying the PALEOMIX pipeline to the three ancient and seven modern Phytophthora infestans genomes as described here takes 5 d using a 16-core server.
Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. This system serves as a model for studying adaptation, genome evolution, and the genetics and evolution of complex traits. To examine how domestication has reshaped the transcriptome of maize seedlings, we used expression profiling of 18,242 genes for 38 diverse maize genotypes and 24 teosinte genotypes. We detected evidence for more than 600 genes having significantly different expression levels in maize compared with teosinte. Moreover, more than 1,100 genes showed significantly altered coexpression profiles, reflective of substantial rewiring of the transcriptome since domestication. The genes with altered expression show a significant enrichment for genes previously identified through population genetic analyses as likely targets of selection during maize domestication and improvement; 46 genes previously identified as putative targets of selection also exhibit altered expression levels and coexpression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to outcrossed teosinte. These genes are enriched for functions related to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication, identifying several genes that may have contributed to the evolution of maize, but highlights the complementary information that can be gained by combining gene expression with population genetic analyses.
The Y chromosome directly reflects male genealogies, but the extremely low Y chromosome sequence diversity in horses has prevented the reconstruction of stallion genealogies [1, 2]. Here, we resolve the first Y chromosome genealogy of modern horses by screening 1.46 Mb of the male-specific region of the Y chromosome (MSY) in 52 horses from 21 breeds. Based on highly accurate pedigree data, we estimated the de novo mutation rate of the horse MSY and showed that various modern horse Y chromosome lineages split much later than the domestication of the species. Apart from few private northern European haplotypes, all modern horse breeds clustered together in a roughly 700-year-old haplogroup that was transmitted to Europe by the import of Oriental stallions. The Oriental horse group consisted of two major subclades: the Original Arabian lineage and the Turkoman horse lineage. We show that the English Thoroughbred MSY was derived from the Turkoman lineage and that English Thoroughbred sires are largely responsible for the predominance of this haplotype in modern horses.
Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.
Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski’s horses. Among domestic horses we confirmed the predominance of a young’crown haplogroup’ in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse ‘Galopin’, born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.