Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of thirteen classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, ten effects replicated consistently.One effect -imagined contact reducing prejudice -showed weak support for replicability. And two effects -flag priming influencing conservatism and currency priming influencing system justification -did not replicate. We compared whether the conditions such as lab versus online or U.S. versus international sample predicted effect magnitudes. By and large they did not. The results of this small sample of effects suggest that replicability is more dependent on the effect itself than on the sample and setting used to investigate the effect. Word Count = 121 words Many Labs 3 Investigating variation in replicability: A "Many Labs" Replication ProjectReplication is a central tenet of science; its purpose is to confirm the accuracy of empirical findings, clarify the conditions under which an effect can be observed, and estimate the true effect size (Brandt et al., 2013; Open Science Collaboration, 2012. Successful replication of an experiment requires the recreation of the essential conditions of the initial experiment. This is often easier said than done. There may be an enormous number of variables influencing experimental results, and yet only a few tested. In the behavioral sciences, many effects have been observed in one cultural context, but not observed in others. Likewise, individuals within the same society, or even the same individual at different times (Bodenhausen, 1990), may differ in ways that moderate any particular result.Direct replication is infrequent, resulting in a published literature that sustains spurious findings (Ioannidis, 2005) and a lack of identification of the eliciting conditions for an effect. While there are good epistemological reasons for assuming that observed phenomena generalize across individuals and contexts in the absence of contrary evidence, the failure to directly replicate findings is problematic for theoretical and practical reasons. Failure to identify moderators and boundary conditions of an effect may result in overly broad generalizations of true effects across situations (Cesario, 2013) or across individuals (Henrich, Heine, & Norenzayan, 2010). Similarly, overgeneralization may lead observations made under laboratory observations to be inappropriately extended to ecological contexts that differ in important ways (Henry, MacLeod, Phillips, & Crawford, 2004). Practically, attempts to closely replicate research findings can reveal important differences in what is considered a direct replication (Schimdt, 2009), thus leading to refinements of the initial theory (e.g., Aronson, 1992, Greenwald et al., 1986. Close replication can also lead to Many Labs 4 the clarification of tacit methodological knowledge that is necessary to elicit the effect of interest (Collins,...
The date when a landbird migrant arrives on its breeding grounds may have reproductive consequences. Generally, early arriving individuals begin breeding earlier and consequently experience greater seasonal reproductive performance. Here, we describe relationships between arrival timing and seasonal reproductive performance in the American redstart (Setophaga ruticilla), a long-distance passerine migrant, arriving at northerly breeding grounds in Michigan s eastern Upper Peninsula. Evidence suggests that both males and females benefited from early arrival at the breeding grounds. Early males appeared to settle on higher quality territories and hatched nestlings sooner than later arrivals. Early females began their clutches early, produced heavier nestlings and possibly laid more eggs than later arrivals. Larger clutches and heavier offspring increase the likelihood of offspring recruiting into the breeding population. The findings of this study point to fitness consequences arising from when a bird arrives at its breeding grounds. These results also have implications for understanding how events occurring during spring migration influence reproductive performance as migratory delays likely influence arrival timing.
OBJECTIVEThis report examines what is known about the relationship between obesity and type 2 diabetes and how future research in these areas might be directed to benefit prevention, interventions, and overall patient care.RESEARCH DESIGN AND METHODSAn international working group of 32 experts in the pathophysiology, genetics, clinical trials, and clinical care of obesity and/or type 2 diabetes participated in a conference held on 6–7 January 2011 and cosponsored by The Endocrine Society, the American Diabetes Association, and the European Association for the Study of Diabetes. A writing group comprising eight participants subsequently prepared this summary and recommendations. Participants reviewed and discussed published literature and their own unpublished data.RESULTSThe writing group unanimously supported the summary and recommendations as representing the working group's majority or unanimous opinions.CONCLUSIONSThe major questions linking obesity to type 2 diabetes that need to be addressed by combined basic, clinical, and population-based scientific approaches include the following: 1) Why do not all patients with obesity develop type 2 diabetes? 2) Through what mechanisms do obesity and insulin resistance contribute to β-cell decompensation, and if/when obesity prevention ensues, how much reduction in type 2 diabetes incidence will follow? 3) How does the duration of type 2 diabetes relate to the benefits of weight reduction by lifestyle, weight-loss drugs, and/or bariatric surgery on β-cell function and glycemia? 4) What is necessary for regulatory approval of medications and possibly surgical approaches for preventing type 2 diabetes in patients with obesity? Improved understanding of how obesity relates to type 2 diabetes may help advance effective and cost-effective interventions for both conditions, including more tailored therapy. To expedite this process, we recommend further investigation into the pathogenesis of these coexistent conditions and innovative approaches to their pharmacological and surgical management.
The major questions linking obesity to type 2 diabetes that need to be addressed by combined basic, clinical, and population-based scientific approaches include the following: 1) Why do not all patients with obesity develop type 2 diabetes? 2) Through what mechanisms do obesity and insulin resistance contribute to β-cell decompensation, and if/when obesity prevention ensues, how much reduction in type 2 diabetes incidence will follow? 3) How does the duration of type 2 diabetes relate to the benefits of weight reduction by lifestyle, weight-loss drugs, and/or bariatric surgery on β-cell function and glycemia? 4) What is necessary for regulatory approval of medications and possibly surgical approaches for preventing type 2 diabetes in patients with obesity? Improved understanding of how obesity relates to type 2 diabetes may help advance effective and cost-effective interventions for both conditions, including more tailored therapy. To expedite this process, we recommend further investigation into the pathogenesis of these coexistent conditions and innovative approaches to their pharmacological and surgical management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.